确定某点附近的点 答:每个解对应的是一组权重,即子问题,红点附近的四个点,也就是它的邻居怎么确定呢?由权重来确定,算法初始化阶段就确定了每个权重对应的邻居,也就是每个子问题的邻居子问题.权重的邻居通过欧式距离来判断.取最近的几个. 取均匀分布向量 https://www.cnblogs.com/Twobox/p/16408751.html MOEAD实现 算法理解与流程 https://www.zhihu.com/question/263555181?sort=created其中两个回答都挺好的…
☆ 写在前面 之前答应大家的毕业答辩之后把所有文档贡献出来,现在答辩已过,LZ信守承诺,把所有文档开源到了GitHub(这个地址包含所有的代码和文档以及PPT,外层为简单的代码).还望喜欢的朋友们,不要吝啬你的星星,多多Star. 简单演示:(这里只演示部分,详情去移步GitHub)      ☆ 有个必须说明的情况是,现在服务器已经不支持访问了,所以大家暂时无法自己查看效果,还请见谅. ☆ 代码质量不高,毕竟是自己很久之前写的代码.关注代码质量提升,还请关注LZ近期GitHub更新 ☆ 由于文…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别. object detection技术的演进:RCNN->SppNET->F…
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特征.比如人脸检测常用的Harr特征:行人检测和普通目标检测常用的HOG特征等: 利用分类器进行识别,比如常用的SVM模型. 基于深度学习的目标检测分为两派: 基于区域提名的,如R-CNN.SPP-net…
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视觉的,但计算机视觉会使用该概念的升级.词袋最早出现在神经语言程序学(NLP)和信息检索(IR)领域,该模型忽略掉文本的语法和语序,用一组无序的单词来表达一段文字或者一个文档. 我们使用BOW在一系列文档中构建一个字典,然后使用字典中每个单词次数构成向量来表示每一个文档.比如: 文档1:I like…
基于深度学习的目标跟踪sort与deep-sort https://github.com/Ewenwan/MVision/tree/master/3D_Object_Detection/Object_Tracking 1 论文和源码地址 SORT: 论文地址:http://arxiv.org/pdf/1602.00763.pdf python代码地址:https://github.com/abewley/sort 前景提取获取目标框ID  C++版本: https://github.com/ng…
论文基于层级表达提出高效的进化算法来进行神经网络结构搜索,通过层层堆叠来构建强大的卷积结构.论文的搜索方法简单,从实验结果看来,达到很不错的准确率,值得学习   来源:[晓飞的算法工程笔记] 公众号 论文: Hierarchical Representations for Efficient Architecture Search 论文地址:https://arxiv.org/abs/1711.00436 Introduction   由于网络的验证需要耗费很长的时间,神经网络结构搜索计算量非常…
-------------------paper--------------------- 一种基于GPU并行计算的MD5密码解密方法 0.abstract1.md5算法概述2.md5安全性分析3.基于GPU的爆破3.1GPGPU3.2CUDA3.3implementation4性能对比 -----------------presentation------------------ [Code] Section 0:Introduction of MD5, and its application…
本发明涉及一种基于RBAC模型的动态访问控制改进方法,属于访问控制领域.对原有RBAC模型进行了权限的改进和约束条件的改进,具体为将权限分为静态权限和动态权限,其中静态权限是非工作流的权限,动态权限是工作流中的权限:将约束条件分为静态约束和动态约束,其中静态约束包括最小权限约束和职责分离约束,动态约束使动态权限按照工作流进行操作.采用本发明的方法改进后的RBAC模型具有以下优势:为传统的RBAC模型中增加了动态特性:跟纯动态模型相比较具有更高的效率:保证需要按顺序执行的权限能够按顺序执行,使得系…