Numpy库基础___五】的更多相关文章

Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3) print(a) #[[[ 0.59115211 -0.40289048 1.34532466] # [-0.04616715 -0.64066822 -1.09722129]]…
Numpy数据存取 •数据的csv文件的存取 只能有效存取和读取一维和二维数据 a = np.arange(100).reshape(5,20) #用delimiter分割,默认为空格 np.savetxt('a.csv',a,fmt='%d',delimiter=',') #unpack=True 读入属性将写入不同变量,默认unpack=False b = np.loadtxt('a.csv',dtype=np.int,delimiter=',',unpack=False) print(b)…
ndarray一个强大的N维数组对象Array •ndarray的建立(元素默认浮点数) 可以利用list列表建立ndarray import numpy as np list =[0,1,2,3] 从列表类型建立 x = np.array(list) print(x) #[0 1 2 3] 可以利用tuple元组建立ndarray import numpy as np 从元组类型建立 x = np.array((4,5,6,7)) print(x) #[4 5 6 7] 可以从列表和元组混合类…
ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] print(a[1,2,3]) #23 print(a[0,1,2]) #6 print(a[-1,-2,-3]) #17 切片 a = np…
ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4),dtype=np.int32) print(x) #[[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1 1 1 1] # [1 1 1 1] # [1 1 1 1]]] #[[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1…
今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a = np.arange(12) b = a print(b is a) b.shape = 3,4 print(a.shape) print(id(a)) print(id(b)) 先看看这段代码,我们随便建立了一个numpy数组 然后我想把a这个值,赋值给b,很简单的操作,b = a 那么我们打…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) fo…
1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的矩阵运算,实践中也主要关注此点. 运行环境:Python3 (1)矩阵(matrix).列表(list).数组(array)的转换 list变成array: np.array(A) list变为matrix:np.mat(A) array和matrix相互转换: np. mat(A),np. arr…
一.numpy库与matplotlib库的基本介绍 1.安装 (1)通过pip安装: >> pip install matplotlib 安装完成 安装matplotlib的方式和numpy很像,下面不再介绍. 2.作用 (1)numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默认安装已经包含了numpy. numPy 是一个运行速度非常快的数学库,主要用于数组…
一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相同,数组下标从0开始. 3.在numpy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank). 4.从ndarray对象提取任何元素(通过切片)由一个数组标量类型的python对象表示,数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组.如果需要得到的ndarray…