目标检测模型的评价标准-AP与mAP】的更多相关文章

专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
微调torchvision 0.3的目标检测模型 本文将微调在 Penn-Fudan 数据库中对行人检测和分割的已预先训练的 Mask R-CNN 模型.它包含170个图像和345个行人实例,说明如何在 torchvision 中使用新功能,以便在自定义数据集上训练实例分割模型. 1.定义数据集 对于训练对象检测的引用脚本,实例分割和人员关键点检测,要求能够轻松支持添加新的自定义数据.数据集应该从标准的类torch.utils.data.Dataset 继承而来,并实现_len和_getitem…
在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择.当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同. 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被叫做“验证/测试”数据集.这个性能由不同的统计量来度量,包括准确率( accuracy ).精确率( precision ).召回率( recall )等等.选择我们会根据某个特定的应用场景来选择相应的统计量.而对每个应用来说,找到一个可以客观地比较模型好坏的度量标准至关重要. 在本文,我们将会讨论…
目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同的是及时我们的物体检测器在图像中检测到物体,如果我们仍无法找到它所在的图像中的哪个位置也是无用的.由于我们需要预测图像中的目标的发生和位置,所以在计算精确度和召回率与普通的二分类有所不同. 一.目标检测问题目标检测问题是指: 给定一个图像,找到其中的目标,找到它们的位置,并且对目标进行分类.目标检测…
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 立即抢购 在这篇文章中: 怎么搜出来? 模型怎么样? One More Thing 本文转载自量子位(QbitAI) 这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈…
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准率的算术平均值.即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值.其具体的计算方法有很多种,这里只介绍PASCAL VOC竞赛(voc2010之前)中采用的mAP计算方法,该方法也是yolov3模型采用的评估方法,yolov3项目中如此解释mAP,暂时看不明白可以先跳过,最后再…
论文基于DA Faster R-CNN系列提出类别正则化框架,充分利用多标签分类的弱定位能力以及图片级预测和实例级预测的类一致性,从实验结果来看,类该方法能够很好地提升DA Faster R-CNN系列的性能   来源:晓飞的算法工程笔记 公众号 论文: Exploring Categorical Regularization for Domain Adaptive Object Detection 论文地址:https://arxiv.org/pdf/2003.09152.pdf 论文代码:h…
首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实效果不是很好,而且还有框的各种情况,因此我们需要下面的指标来衡量一个目标检测模型的好坏. 1.IOU(Intersection Over Union) 这是关于一个具体预测的Bounding box的准确性评估的数据,意义也就是为了根据这个IOU测定你这个框是不是对的,大于等于IOU就是对的,小于就…
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(False Positive)是负样本预测为正样本的数量,误报:即与Ground truth区域IoU < threshold的预测框 FN(True Negative)是本为正,错误的认为是负样本的数量,漏报:遗漏的Ground truth区域 TN(False Negative)是本为负,正确的认为是负样本…
原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快,效果也还可以,但在github上还没有完整的基于pytorch的yolov3代码,目前star最多的pytorch yolov3项目只能做预测,没有训练代码,而且我看了它的model写得不是很有层次.自己准备利用接下来的几个周末把这个坑填上. 希望能够帮助开发者了解如何基于Pytorch实现一个强…