论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Jiang, Yi Yang, Alexander G Hauptmann论文来源:CVPR 2019论文地址:download 论文代码:download 1 Preface 出发点: 无监督域自适应(UDA)对目标域数据进行预测,而标签仅在源域中可用: 以往的方法将忽略类信息的域差异最小化,可能导致…
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Yu-Gang Jiang论文来源:aRxiv 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(UDA)的目的是将从一个完全标记的源域学习到的知识转移到…
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin论文来源:ICLR 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(Unsupervised domain adaptation,UDA)的目的…
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取器和判别器在域分类loss上对抗,同时特征提取器和lable分类器(也就是原任务中的分类器)共同优化lable分类loss.整个过程跟GAN是差不多的,一种个人的不严谨的说法,可以将GAN理解成像素空间上的Adaptation,而这篇文章是特征空间上的Adaptation. 文章的另一个贡献是提出了…
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3D Semantic Segmentation 摘要 无监督域自适应(UDA)对于解决新域中缺少注释的问题至关重要.有许多多模态数据集,但大多数UDA方法都是单模态的.在这项工作中,我们探索如何从多模态学*,并提出跨模态UDA(xMUDA),其中我们假设存在二维图像和三维点云进行三维语义分割.这是一…
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation论文作者:Chao Chen , Zhihong Chen , Boyuan Jiang , Xinyu Jin论文来源:AAAI 2019论文地址:download 论文代码:download引用次数:175 1 Introduction 近年来,大多数工作集中于减少不同领域之间的…
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a n…
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原作者Missouter,博客园链接https://www.cnblogs.com/missouter/,欢迎交流. [Abstract] 该论文提出了一种结合图像中语义.几何学与稀疏.稠密信息的3D目标检测算法. 该算法用Faster R-CNN接收作为立体输入的左右图像,同时检测.联系两幅图像中的…
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等等.CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervised learning问题.两篇paper名字分别是:Revisiting Self-Supervised Visual Representation Learnin…
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作. 这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自…