MapReduce--shuffle】的更多相关文章

MapReduce Shuffle 过程详解 一.MapReduce Shuffle过程 1. Map Shuffle过程 2. Reduce Shuffle过程 二.Map Shuffle过程 1.   环形缓冲区 Map输出结果是先放入内存中的一个环形缓冲区,这个环形缓冲区默认大小为100M(这个大小可以在io.sort.mb属性中设置),当环形缓冲区里的数据量达到阀值时(这个值可以在io.sort.spill.percent属性中设置)就会溢出写入到磁盘,环形缓冲区是遵循先进先出原则,Ma…
转:http://blog.csdn.net/bamuta/article/details/12995139 解决办法 : 在1个网站上找到了解决方法,(网络忘了没记)urg, my copy/paste was botched up but hopefully this still makes sense. The value mapreduce.shuffle is now mapreduce_shuffle and the name yarn.nodemanager.aux-service…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从代码分析来说明在map端是如何将map的输出保存下来等待reduce来取. 在执行每个map task时,无论map方法中执行什么逻辑,最终都是要把输出写到磁盘上.如果没有reduce阶段,则直接输出到hdfs上,如果有有reduce作业,则每个map方法的输出在写磁盘前线在内存中缓存.每个map…
MapReduce简介 在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的.数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问题,并提供了很多配置项及扩展点.一个MapReduce的大致数据流如下图: 更详细的MapReduce介绍参考Hadoop MapReduce原理与实例. Mapper的输出排序.然后传送到Reducer的过程,称为shuffle.本文详细地解析shuffle过程,深入理解这个过程对于MapRedu…
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
Shuffle本意是 混洗, 洗牌的意思, 在MapReduce过程中需要各节点上同一类数据汇集到某一节点进行计算,把这些分布在不同节点的数据按照一定的规则聚集到一起的过程成为Shuffle. 在Hadoop的MapReduce框架中, Shuffle是连接Map和Reduce之间的桥梁, Map的数据要用到Reduce中必须经过Shuffle这个环节. 由于Shuffle涉及到磁盘的读写和网络的传输, 所以Shuffle的性能高低直接影响到整个程序的性能和吞吐量. MapReduce中的Shu…
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则"打乱"成具有一定规则的数据,以便reduce端接收处理.其在MapReduce中所处的工作阶段是map输出后到reduce接收前,具体可以分为map端和reduce端前后两个部分. 在shuffle之前,也就是在map阶段,MapReduce会对要处理的数据进行分片(split)操作,…
15/07/01 20:14:41 FATAL containermanager.AuxServices: Failed to initialize mapreduce.shuffle java.lang.IllegalArgumentException: The ServiceName: mapreduce.shuffle set in yarn.nodemanager.aux-services is invalid.The valid service name should only con…
在Mapreduce中,Shuffle过程是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段,共可分为6个详细的阶段: 1).Collect阶段:将MapTask的结果输出到默认大小为100M的MapOutputBuffer内部环形内存缓冲区,保存的是key/value,Partition分区 2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,先是对partition分区号进行排…