BZOJ3534:[SDOI2014]重建(矩阵树定理)】的更多相关文章

Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运的是,此前T国政府调查过每条道路的强度,现在他们希望只利用这些信息估计灾情.具体地,给定每条道路在洪水后仍能通行的概率,请计算仍能通行的道路恰有N-1条,且能联通所有城市的概率. Input 输入的第一行包含整数N. 接下来N行,每行N个实数,第i+l行,列的数G[i][j]表示城市i与j之 间仍有…
#include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 55; namespace mat { double a[N][N]; int n,p=1; double gauss_jordan() { double ans = 1; for(int i=1;i<=n;i++) { int r=i; for(int j=i+1;j<=n;j++) if(fabs(a[j][i])>fa…
题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府调查过每条道路的强度,现在他们希望只利用这些信息估计灾情.具体地,给定每条道路在洪水后仍能通行的概率,请计算仍能通行的道路恰有N-1条,且能联通所有城市的概率. 输入格式 输入的第一行包含整数N. 接下来N行,每行N个实数,第i+l行,列的数G[i][j]表示城市i与j之 间仍有道路联通的概率. 输…
点此看题面 大致题意: 给你一张图,每条边有一定存在概率.求存在的图刚好为一棵树的概率. 矩阵树定理是什么 如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理. 矩阵树定理的应用 此题中,直接根据\(p_{i,j}\)来套矩阵树定理显然是不可以的. 考虑我们把每个\(p_{i,j}\)变成\(\frac{p_{i,j}}{1-p_{i,j}}\),套用矩阵树定理,然后最后将结果乘上\(\prod_{i=1}^n\prod_{j=i+1}^n(1-p_{i,j})\),就是答案了. 此时…
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> using namespace std; #define ll long long #define eps 1e-8 int n; double g[55][55],s=1; double Gauss() { double ret=1; for(int i=1;i<n;++i) { int nw=i;…
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - E(u, v))$$ 我们知道变元矩阵树定理 ---> 不知道请见此 我们自然希望要求和的事物只跟生成树的边有关 因此考虑把$\prod\limits_{E \notin Tree} (1 - E(u, v))$转化为$\prod\limits_{E} (1 - E(u, v)) * \frac{1…
传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cmath> #include <iostream> using namespace std; int n; double a[101][101]; double ans = 1, tmp = 1, eps = 1e-9; inline void gs() { int i, j, k; doubl…
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #include<cstdlib> #include<cctype> #include<algorithm> #include<cstring> #include<cmath> #define eps 1e-8 #define maxn 100 using na…
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\(A\)为邻接矩阵,\(D\)为度数矩阵,则基尔霍夫(Kirchhoff)矩阵即为:\(K = D - A\).具体实现中,记 \(a\) 为Kirchhoff矩阵,则若存在 \(E(u, v)\) ,则\(a[u][u] ++, a[v][v] ++, a[u][v] --, a[v][u] --\…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…