some nets were not able to be matched】的更多相关文章

原因是:PCB画好之后再次更改原理图,将更改后的原理图更新至PCB的时候会导致原理图中新生成的网络和PCB中原有的网络名不匹配 解决办法:PCB---设计----网络表---编辑网络,把PCB中不匹配的网络(当前用不到的网络)删除.…
Merge 的On子句指定Match condition,When子句指定过滤条件,如果Source Table和Targe Table匹配的上,很好理解:如果匹配不上,必须深入理解不匹配的条件,否则,就很容易出错. ON <merge_search_condition> Specifies the conditions on which <table_source> is joined with target_table to determine where they match…
Now I want to introduce the use of 'Configure Physical Nets', as follows: If you has finished the PCB layout, as follows: Then you want to get rid of these white wires, so the two boards would be separated completely. And you change the nets of the o…
1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 2.论文“A fast learning algorithm for deep belief nets”的整个过程及其“Complementary priors”的解释: 见:paper:A fast learning algorithm for deep belief nets和 [2014041…
Conditional Generative Adversarial Nets arXiv 2014   本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈"的对抗,从而达到更好的结果. 众所周知,GANs 是一个 minmax 的过程: 而本文通过引入 条件 y,从而将优化的目标函数变成了: 下图给出了条件产生式对抗网络的结构示意图: 是的,整个过程就是看起来的这么简单,粗暴,有效. 实验部分,作者在 Mnist 数据集上进行了实验: 然后是,给图像…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…
本来用着sae好好的,结果第二天部署的应用突然不好使了,各种Error 404 – Not Found.No context on this server matched or handled this request. 折腾了一下午也一直是这个错,没招只好重写一个程序放上去,结果还是这个错误..删应用删jar包各种无解... 后来有点受不了,直接点击jvm管理,停止,重启,停止重启,n次后sae又恢复正常了...证明一个问题,jvm出现了异常,所以适当时候需要考虑反复重启jvm...我真是无奈…
Problem E: Reliable NetsYou’re in charge of designing a campus network between buildings and are very worried about itsreliability and its cost. So, you’ve decided to build some redundancy into your network while keeping itas inexpensive as possible.…
Generative Adversarial Nets NIPS 2014  摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布:还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D 尽可能的犯错误,让其无法判断一个图像是产生的,还是来自训练样本.这个框架对应了一个 minimax two-player game. 也就是,一方得势,必然对应另一方失势,不存在两方共赢的局面,这个…
Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 32x32 colour images in 10 classes. This dataset was collected by AlexKrizhevsky, Vinod Nair, and Geoffrey Hinton. Many contestants used convolutional n…