洛谷P3857 [TJOI2008]彩灯 [线性基]】的更多相关文章

题目传送门 彩灯 题目描述 Peter女朋友的生日快到了,他亲自设计了一组彩灯,想给女朋友一个惊喜.已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一个彩灯只有亮与不亮两个状态,所以共有2N个样式.由于技术上的问题,Peter设计的每个开关控制的彩灯没有什么规律,当一个开关被按下的时候,它会把所有它控制的彩灯改变状态(即亮变成不亮,不亮变成亮).假如告诉你他设计的每个开关所控制的彩灯范围,你能否帮他计算出这些彩灯有多少种样式可以展示给他的女朋友?…
传送门 线性基裸题 直接把所有的状态都带进去建一个线性基 然后答案就是$2^{cnt}$($cnt$代表线性基里数的个数) //minamoto #include<cstdio> #include<cstring> #define ll long long ; ll b[N],a[N];int n,m,cnt;char s[N]; inline void insert(ll x){ ;i>=;--i) ){ if(!b[i]) return (void)(b[i]=x,++c…
题目大意:有$n$盏灯,$m$个开关($n,m\leqslant 50$),每个开关可以控制的灯用一串$OX$串表示,$O$表示可以控制(即按一下,灯的状态改变),$X$表示不可以控制,问有多少种灯的亮暗状态 题解:线性基,线性基有一个性质,插入的数的任意一个集合的异或值都不同,所以若插入了$k$个数,答案就是$2^k$ 卡点:无 C++ Code: #include <cstdio> #include <cctype> int n, m; long long p[55], x,…
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\)的.(这就有\(70\)分?) 因为最开始的图是连通的,可以先求一个\(dis[i]\)表示\(1\)到\(i\)的异或和.每次加边会形成环,就是在线性基中插入一个元素. 因为有撤销,所以线段树分治就好了.线段树上每个节点开一个线性基.同一时刻只需要\(\log\)个线性基的空间. 复杂度\(O(\…
题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线性基的所有异或和都不为零.因此维护一个线性基,每次插入编号 \(i\),如果 \(i\) 与之前的线性基都线性无关,也就是能插入,就插入并将魔力值累加到 \(ans\). #include <bits/stdc++.h> using namespace std; typedef long long…
题目描述 已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一个彩灯只有亮与不亮两个状态,所以共有2N个样式.由于技术上的问题,Peter设计的每个开关控制的彩灯没有什么规律,当一个开关被按下的时候,它会把所有它控制的彩灯改变状态(即亮变成不亮,不亮变成亮).假如告诉你他设计的每个开关所控制的彩灯范围,你能否帮他计算出这些彩灯有多少种样式可以展示给他的女朋友? 注: 开始时所有彩灯都是不亮的状态. 输入输出格式 输入格式: 每组测试数据第一行为两个…
正解:线性基+贪心 解题报告: 传送门! 这题其实没什么好写题解的,,,显然贪心一下尽量选魔力大的,不用证明趴挺显然的来着 所以就直接按魔力排个序,插入线性基里面,能插就加个贡献,over 放下代码趴QwQ (我好像,真的,写得越来越敷衍了TT #include<bits/stdc++.h> using namespace std; #define il inline #define ll long long #define gc getchar() #define rc register c…
题面 题面 题解 题意:给定n个01串,求互相异或能凑出多少不同的01串. 线性基的基础应用. 对于线性基中的01串,如果我们取其中一些凑成一个新的01串,有一个重要的性质:任意2个不同方案凑出的01串也不相同. 因此我们只需要求出给定01串的线性基大小,然后求出有多少搭配方案即可,方案数即为\(2^{tot} - 1\) #include<bits/stdc++.h> using namespace std; #define R register int #define AC 55 #def…
可以将每一个开关控制的灯的序列看作是0/1组成的二进制. 由于灯的开和关是满足异或的性质的,所以直接求一下线性基大小即可. 答案为 $2^{size}.$ #include <cstdio> #include <cstring> #include <algorithm> #define N 62 #define M 62 #define ll long long #define setIO(s) freopen(s".in","r"…
题面 对于每一个开关,我们可以看成一个0/1串,初始是一个全部为0的串,要求经过这些开关的操作后,出现的不同的0/1串的个数 建模就是存在一些数,这些数异或起来是0(等价于没有操作).那么需要求一个集合,满足集合中元素相互异或不会出现0. 线性基派上用场了. 接下来就是线性基的基本插入操作和统计一下线性基里的元素个数: 性基内的元素都是由外界元素异或出来的,那么对于线性基内每个元素,我们都有选/不选两种情况,所以ans=1<<cnt: #include <bits/stdc++.h>…