【pytorch】pytorch基础学习】的更多相关文章

在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 nn.init.zeros_(a) #初始化a为0 nn.init.constant_(a, ) # 初始化a为3 nn.init.uniform_(a) #初始化为uniform分布 随机数矩阵 torch.rand(, ) # * , [, )的随机数torch.rand_like(m) #创建…
引言 本篇介绍Pytorch的基础数据类型,判断方式以及常用向量 基础数据类型 torch.Tensor是一种包含单一数据类型元素的多维矩阵. 目前在1.2版本中有9种类型. 同python相比,pytorch没有string类型: 由于pytorch是面向计算的,对于字符这种通常通过编码下手: 怎样用数字的形式去表示语言(字符串) : NLP -> one-hot 或 Embedding(Word2vec,glove) 判断数据类型 打印数据类型:a.type() 打印的是基本的数据类型,没有…
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differentiation 1.2.1. Tensor 1.2.2. Gradients 1.3. Neural Networks 1.3.1. Defind the network 1.3.2. Process inputs and call backward 1.3.3. Loss function 1.3.4…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
pytorch怎么入门学习 https://www.zhihu.com/question/55720139…
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs)构建的模型和使用迁移学习构建的模型的性能 介绍 我去年在一个计算机视觉项目中工作,我们必须建立一个健壮的人脸检测模型. 考虑到我们拥有的数据集的大小,从头构建一个模型是一个挑战.从头构建将是一个耗时又消耗计算资源的方案.由于时间紧迫,我们必须尽快找出解决办法. 这就是迁移学习拯救我们的时候.这是一个…
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare dataset 准备数据包括数据的读取加载并转换为torch框架下识别的tensor格式,注意数据的dtype为float32格式 2. 设计模型 Design model using class 网络的基本框架部分,包括自定义的网络layer结构,注意维度的变换要一致,另外,该类中还应包括forward部分…
训练源码: 源码仓库:https://github.com/pytorch/tutorials 迁移学习测试代码:tutorials/beginner_source/transfer_learning_tutorial.py 准备工作: 下载数数据集:https://download.pytorch.org/tutorial/hymenoptera_data.zip          -->  tutorials/beginner_source/data/hymenoptera_data 下载与…
一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作硬件 高级语言:站在人的角度,说人话:即用人类的字符去编写程序,屏蔽了硬件操作 2.优缺点 语言 优点 缺点 机器语言 最底层,执行速度快 最复杂,开发效率最低 汇编语言 比较底层,执行速度较快 复杂,开发效率低 高级语言 编译型: 执行速度快,不依赖语言环境运行 跨平台差 解释型: 跨平台好,一份…
一.Python基础学习 一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作硬件 高级语言:站在人的角度,说人话:即用人类的字符去编写程序,屏蔽了硬件操作 2.优缺点 语言 优点 缺点 机器语言 最底层,执行速度快 最复杂,开发效率最低 汇编语言 比较底层,执行速度较快 复杂,开发效率低 高级语言 编译型: 执行速度快,不依赖语言环境运行 跨平台差…