HDU 2894 DeBruijin (数位欧拉)】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2894 题目大意:旋转鼓的表面分成m块扇形,如图所示(m=8).图中阴影区表示用导电材料制成,空白区用绝缘材料制成,终端a.b和c是3(k=3)处接地或不是接地分别用二进制信号0或1表示.因此,鼓的位置可用二进制信号表示.试问应如何选取这8个扇形的材料使每转过一个扇形都得到一个不同的二进制信号,即每转一周,能得到000到111的8个数. 那我们现在把旋转鼓的表面分成m块扇形,每一份记为0或1,使得任何…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4272    Accepted Submission(s): 1492 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 第一行一个整数T,表示数据组数.T≤10T \leq 10T≤10 对于每一个组,共一行,包含一个整数,表示正整数N(1≤N≤106)N(1 \leq N \leq 10^{6})N(1≤N≤10​6​​). 输出描述 对于每一个组,输出共一行,包含一个整数,表示答案. 输入样例 1 4 输出样例…
Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=628&pid=1003 Description 从镜面材质的圆上一点发出一道光线反射NN次后首次回到起点. 问本质不同的发射的方案数. Input 第一行一个整数T,表示数据组数.T \leq 20T≤20 对于每一个组,第一行一个整数n(1 \leq n…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序. 思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序.我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6390 直接开始证明: 我们设…………………………………….....…...............……………...(1) 则…................................….…(2) 为什么是这样呢,因为我们知道 同理得到b的分解和的分解 我们会发现,虽然a和b的分解里可以有相等的部分,但是在里的也就是我们假设为的部分是不会有重复的,那么要由*得出也就是要去除重复部分,的重复部分就是…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1997    Accepted Submission(s): 772 Problem Description Do you have spent some time to think and try to solve those unsolved problem aft…
题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质的数成对存在.其和为n. 公式证明: 反证法:如果存在K!=1使gcd(n,n-i)=k,那么(n-i)%k==0而n%k=0那么必须保证i%k=0k是n的因子,如果i%k=0那么gcd(n,i)=k,矛盾出现; 所以先求出1……n-1 的和, 再用这个和 减去 上面公式求出来的值. 欧拉函数phi(m)…
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the t…
/** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include <cstring> using namespace std; #define Max 3000000 ]; ]; ]; void init() { ; memset(flag,,sizeof(flag)); phi[]=; ;i<=Max;i++)//欧拉筛选 { if(flag[i]) {…