Torch实现ReQU,和梯度验证】的更多相关文章

重写函数 我们使用torch实现我们自己的ReQU模块.在实现一个新的layer之前,我们必须了解,我们并不是重写forward和backward方法,而是重写里面调用的其它方法. 1)又一次updataOutput方法.从而实现forward方法. 2)重写updataGradInput方法实现部分backward,计算loss函数相对于layer输入的导数,dloss/dx, 依据loss函数相对于layer输出的导数dloss: 3)重写accGradParameters方法实现backw…
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 需要用到的库有tensorflow和numpy,其中tensorflow其实版本>=2.0.0就行 import tensorflow as tf import n…
参考:https://github.com/milesial/Pytorch-UNet 实现的是二值汽车图像语义分割,包括 dense CRF 后处理. 使用python3,我的环境是python3.6 1.使用 1> 预测 1)查看所有的可用选项: python predict.py -h 返回: (deeplearning) userdeMBP:Pytorch-UNet-master user$ python predict.py -h usage: predict.py [-h] [--m…
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效.如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类和方法,这些类和方法覆盖了神经网络中的线性变换.激活函数.卷积层.全连接层.池化层等常用神经网络结构的实现.在完成模型的搭建之后,我们还可以使用PyTorch提供的类型丰富的优化函数来…
首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dz/dx=dz/dy × dy/dx 中的 dz/dy.grad_variables也可以是tensor或序列. retain_graph:反向传播需要缓存一些中间结果,反向传播之后,这些缓存就被清空,可通过指定这个参数不清空缓存,用来多次反向传播. create_graph:对反向传播过程再次构建计算图,可通过backward of b…
关于优化函数的调整拆下包:https://ptorch.com/docs/1/optim class torch.optim.Optimizer(params, defaults)所有优化的基类. 参数: params (iterable) —— 可迭代的Variable 或者 dict.指定应优化哪些变量.defaults-(dict):包含优化选项的默认值的dict(一个参数组没有指定的参数选项将会使用默认值).load_state_dict(state_dict)加载optimizer状态…
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现代词向量技术常用的模型 Word2Vec.在实验中将以小说<三体>为例,展示了小语料在 Word2Vec 模型中能够取得的效果. 在最后一个将加载已经训练好的一个大规模词向量,并利用这些词向量来做一些简单的运算和测试,以探索词向量中包含的语义信息. 知识点 N-Gram(NPLM) 语言模型 Wo…
神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers),和一个用来返回output的方法forward(input). 以下面这个区分数字图像的网络为例: 上图是一个简单的前馈网络.它接受输入,一个层接一层地通过几层网络,最后给出输出. 典型的神经网络训练程序如下: 定义具有一些可学习参数(或权重)的神经网络 迭代输入的数据集 通过网络处理输入 计算…
Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network 可以进行学习,通过层次结构学习到更利于任务的特征.得益于近年来互联网充足的数据,计算机硬件的发展以及大规模并行化的普及.本文主要简单回顾一下 MLP ,也即为Full-connection Neural Network ,网络结构如下,分为输入,隐层与输出层,除了输入层外,其余的每层激活函数均采用…
BP算法是适合监督学习的,因为要计算损失函数,计算时y值又是必不可少的,现在假设有一系列的无标签train data:  ,其中 ,autoencoders是一种无监督学习算法,它使用了本身作为标签以此来使用BP算法进行训练,即,见如下示例: 自编码器尝试学习一个  的函数,它尝试逼近一个恒等函数,从而使得输出  接近于输入 ,这样做的意义在于如果对hidden layer加上一些限制,比如hidden layer的数量限制,就可以从输入数据中发现一些有趣的结构. 举个栗子:假设网络的输入是一张…