由于本题和HDU2732几乎相同,所以读者可以看-> HDU2732题解传送门: http://www.cnblogs.com/zhouzhendong/p/8362002.html…
1066: [SCOI2007]蜥蜴 题目:传送门 题解: 哇QTT大佬一眼秒算法...ORT 其实很容易就可以看出来是一道最大流 因为有边的使用限制,那么就可以直接当成是流量来处理嘛 因为是对点进行操作,那么就可以拆点啊 一开始现将有柱子的点自己把限制条件连上,就是对点x拆成x1和x2那么就x1-->x2流量为限制 然后就是无脑乱连,对于判断是否出了边界一开始还傻逼逼的没想出来... 枚举多一圈界外的点,那么如果算曼哈顿距离(据说欧几里得也OK)符合条件,就判断是不是在界内: 在界内就直接连嘛…
在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上.石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失.以后其他蜥蜴不能落脚.任何时刻不能有两只蜥蜴在同一个石柱上. Input 输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离.以下r行为石竹的…
BZOJ1066 SCOI2007 蜥蜴 Description 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上.石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失.以后其他蜥蜴不能落脚.任何时刻不能有两只蜥蜴在同一个石柱上. Input 输入第一行…
[bzoj1066][SCOI2007]蜥蜴 Description 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上.石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失.以后其他蜥蜴不能落脚.任何时刻不能有两只蜥蜴在同一个石柱上. Input 输入第…
[bzoj1066]: [SCOI2007]蜥蜴 把石柱拆点,流量为高度 然后S与蜥蜴连流量1的边 互相能跳到的石柱连inf的边 石柱能到边界外的和T连inf的边 然后跑dinic就好了 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm>…
P2472 [SCOI2007]蜥蜴 自己第一道独立做题且一遍AC的网络流题纪念... 看到这道题我就想到网络流建图的方式了... 首先根据每个高度,我们将每个点拆成两个点限流.之后根据跳的最大距离,连边,最后能跳出边界的与t连边,跑最大流即可... 突然发现最大流与网格图好像有着某种联系... #include<bits/stdc++.h> #define ll long long using namespace std; const int N=21,INF=1e9; int h[N][N…
http://www.lydsy.com/JudgeOnline/problem.php?id=1066 每个柱子拆成两个点 i<<1,i<<1|1,之间连流量为高度的边 如果第i根柱子有蜥蜴,S向i<<1连边,流量为1 如果第i根柱子能跳出去,i<<1|1向T连边,流量为inf 如果第i根柱子能跳到第j根柱子,i<<1|1向j<<1连边,流量为inf 至于每根柱子每个时刻只能有一个蜥蜴,不需要管,总可以通过先后顺序调整成满足条件 #…
http://www.lydsy.com/JudgeOnline/problem.php?id=1066 本题想一想应该懂了的. 我们想啊,,每个点都有限制,每个点都可以跳到另一个有限制的点,每个有蜥蜴的点都可以跳到四周的有限制的点,,哈哈,自然会想到网络流. 其中很自然的可以相到,要表示每个点的容量限制,那么就拆点,一个上,一个下,容量为权值 然后向四周连接也就是某个点的下将距离范围内的某个点的上连接,容量为oo 源向蜥蜴连接,容量为1 可以跑到边界外的点的下向汇连接,容量为oo 跑一次最大流…
首先...这是道(很水的)网络流 我们发现"每个时刻不能有两个蜥蜴在同一个柱子上"这个条件是没有用的因为可以让外面的先跳,再让里面的往外跳 但是还有柱子高度的限制,于是把柱子拆点为p1和p2,p1向p2连边,边权为柱子高度 对于相距(注意!是欧几里得距离!)小于d的两个柱子p和q,q2向p1连边,p2向q1连边,边权为inf S向有蜥蜴的柱子的p1连边,边权为1,可以一步跳出去的柱子p2向T连边,边权为inf 跑最大流即可 /******************************…