写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取…
实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取图片的灰度值矩阵(28,28),然后把每张图片的灰度值矩阵resha…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n_components参数设置需要保留特征的数量,如果是小数,则表示保留特征的比例; 设为大于零的整数,会自动的选取n个主成分- whiten: 默认为False,若为True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致 PCA降维识别手写数字 导包 import numpy as np imp…
我们用pycharm打开自己写的代码,当多个文件之间有相互依赖的关系的时候,import无法识别自己写的文件,但是我们写的文件又确实在同一个文件夹中, 这种问题可以用下面的方法解决: 1)打开File-->Setting—>打开 Console下的Python Console,把选项(Add source roots to PYTHONPAT)点击勾选上 2)右键点击自己的工作空间,找下面的Mark Directory as 选择Source Root,就可以解决上面的问题了! 转载自:htt…
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究院的两个数据集构建而成.训练集中包含250个人的手写数字,其中50%是高中生,50%来自人口调查局.每个训练集的数字图片像素为28x28.MNIST数据集可通过 下载链接 下载,它包含以下内容: 训练集图像:train-images-idx3-ubyte.gz,包含60000个样本 训练集类标:tr…
import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer from NeuralNetwork import NeuralNetwork from sklearn.cross_validation imp…
更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集构造到神经网络搭建各个方面对现有代码进行修改. 神经网络的结构: 1.输入28*28=784维行向量 2.卷积层:卷积核大小5*5,共32个,激活函数ReLu 3.池化层:最大值池化,2*2窗口 4.卷积层:卷积核大小5*5,共64个,激活函数ReLu 5.池化层:最大值池化,2*2窗口 6.全连接…
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档    在手机打开   赖勇浩(   http://laiyonghao.com…