ALS数学点滴】的更多相关文章

其中,$n_{u_i}$表示用户$i$评分的电影数目,$n_{m_j}$表示对电影$j$评分的用户数目.设$I_i$表示用户$i$所评分的电影集合,则$n_{u_i}$是$I_i$的基数,同样的,$I_j$表示对电影$j$评分的用户集合,$n_{m_j}$是$I_j$的基数.这对应于Tikhonov正则化中的$\Gamma_U=diag(n_{u_i})$和$\Gamma_M=diag(n_{m_j})$ 设$U=[\mathbf{u}_i]$为用户特征矩阵,$M=[\mathbf{m}_j]$…
今年是好没长进的一年呢..只学了些基本的方法.. 本文记号0] x:p x类型为p1] f(x) 表示一个函数2] (n_1,n_2,...) 表示多元组,特别的,(n)表示一个一元组3] x 表示一个代数符号/未知数/变量,即x:unm4] {...} 表示一个集合(一般指无序) - {expr|x in set} 表示对set里的每一个元素执行expr的集合,即 set2<-{expr|x in set} 此时expr是set关于set中的元素x到set2的映射之一,记为 expr:mapp…
原文:SQL点滴25-T-SQL面试语句,练练手 1. 用一条SQL语句查询出每门课都大于80分的学生姓名 name   kecheng    fenshu 张三     语文     81张三     数学     75李四     语文     76李四     数学     90王五     语文     81王五     数学     100王五     英语     90 思路:这里不能直接用分数>80这样的比较条件来查询的到结果,因为要求没门成绩都大于80.我们可以反过来思考,如果有…
本篇文章的开头笔者提出一个疑问,何为数据科学,数据科学是做什么的?大家带着这个疑问去读接下来的这篇音乐推荐的公众号. 从经验上讲,推荐引擎属于大规模机器学习,在日常购物中大家或许深有体会,比如:你在淘宝上浏览了一些商品,或者购买了一些商品,那么淘宝就会根据你的偏好给你推荐一些其他类似的商品.然而,相比较其他机器学习算法,推荐引擎的输出更加的直观,有时候的推荐效果让人吃惊.作为机器学习开篇文章,本篇文章会系统的介绍基于Audioscrobbler数据集的音乐推荐. 数据集介绍 Audioscrob…
参考资料 [1]<Spark MLlib 机器学习实践> [2]http://blog.csdn.net/u011239443/article/details/51752904 [3]线性代数-同济大学 [4]基于矩阵分解的协同过滤算法 https://wenku.baidu.com/view/617482a8f8c75fbfc77db2aa.html [5]机器学习的正则化 http://www.cnblogs.com/jianxinzhou/p/4083921.html [6]正则化方法…
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 (广泛采用) 协调过滤的概念 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法. 协同过滤是利用集体智慧的一个典型方法.要理解什么是协同过滤 (Collaborative Filtering, 简称 CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而…
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−−−−−−−√ ∥x∥∞=max(|x1|,-,|xn|) 这里不做解释的给出例如以下示意图: 当中,0范数表示向量中非0元素的个数. 上图中的图形被称为lp ball. 表征在同一范数条件下,具有相同距离的点的集合. 范数满足例如以下不等式: ∥A+B∥≤∥A∥+∥B∥(三角不等式) 向量范数推广可…
1.线性回归模型线性回归是统计学中最常用的算法,当你想表示两个变量间的数学关系时,就可以用线性回归.当你使用它时,你首先假设输出变量(相应变量.因变量.标签)和预测变量(自变量.解释变量.特征)之间存在的线性关系.(自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因.因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动.)线性模型可能使用于类似下面的问题:比如你正在研究一个公司的销售额和该公司在广告上的投入之间的关系,或者某人在社交网…
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的无理数(不可公度比)的发现迫使希腊人不得不研究这些数.它们确实是数吗?它们出现于集合论证过程中,而整数和整数之比则既出现于几何也出现于一般的数量研究中.用于可公度的长度.面积和体积的几何证明,怎样才能推广用之于不可公度的这些量呢? 欧多克索斯引入了变量这个概念.量跟数不同,数是从一个跳到另一个,例如…