【Leetcode】300. 最长递增子序列】的更多相关文章

算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序.例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列. 解法一:暴力递归 不解释,先暴力搞一下.(时间复杂度O(n^3),不行) 1 class Solution { 2 public: 3 int l(vector<int>&…
最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]. 示例 2: 输入: [2,2,2,2,2] 输出: 5 解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5. 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. 思路 定义 dp(n,1) cnt (n,1) 这里我用dp[i]…
最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4. 说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可. 你算法的时间复杂度应该为 O(n2) . 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗? 直接用DP求解,算法如下:时间复杂度为O(N^2) ①最优子问题 设lis[i] 表示索引为 [0...i…
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fang-fa-zhi-pai-you-xi-jia/ 描述 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18]输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4.说明: 可能会有多种最长上升子序列的组合,你只需要…
673. 最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]. 示例 2: 输入: [2,2,2,2,2] 输出: 5 解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5. 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. PS: 普通递推,加一个记录的数组 class Solu…
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4. 说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可. 你算法的时间复杂度应该为 O(n2) . 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗? class Solution { public int lengthOfLIS(int[] nu…
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示以第i个数字结尾的最长上升子序列的.每次a把当前数字当作是最后一个序列的最后一个数字,只看这个数字之前的数字,如果比他之前的数字大,那么选择这个数字之后最大上升序列长度+1,memo[i]=memo[j]+1. #include <bits/stdc++.h> using namespace st…
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4. 说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可. 你算法的时间复杂度应该为 O(n2) . 进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗? 这个题目和最长公共子序列一样,都是可以利用动态规划来解决问题的: 可以利用常见的动态规划思路: 1:将…
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是4.因为可能会有超过一种的最长上升子序列的组合,因此你只需要输出对应的长度即可. 解题思路 用动态规划思想,考虑用一个数组dp记录到当前数字为止,可能的最长上升子序列长度,注意并不一定是当前子序列的解.这样最后返回dp数组的长度即可.具体以上述数组为例: 首先把10加入到dp中,此时最长上升子序列长…
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state[j] + 1) \space 如果 \space nums[i] > nums[j], 0 \leqslant j < i\] class Solution { public: int lengthOfLIS(vector<int>& nums) { int n = nums…