原版传送门 & 加强版传送门 题意: \(T\) 组数据,求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\gcd(i,j)\) 弱化版中 \(T=1\),\(n \leq 5 \times 10^6\) 强化版中 \(T=10^4\),\(n \leq 10^7\) 推式子: \[\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\gcd(i…
题解[LuoguP6222]「P6156简单题」加强版 加强版很好地体现了这个题的真正价值.(当然是指卡常 本题解给出了本题更详尽的推倒导和思考过程,思路与 CYJian 的类似,具体式子的个别地方换用了更易于理解的式子,可以看作是给数论新手的对莫反套路和欧拉筛套路的补充解释和技巧指导. Problem 最多 \(10^4\) 组询问,每次询问给定 \(n\) ,求 \[\begin{aligned} \sum_{i=1}^n\sum_{j=1}^n(i+j)^K\gcd(i,j)\mu^2(\…
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i][k|j][({i\over k},{j\over k})=1]=\sum\limits_{i=1}^{a\over k}\sum\limits_{j=1}^{b\over k}[(i,j)=1]\] 继续化简 \[\sum\limits_{i=1}^{b\over k}\sum\limits_{…
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\dfrac{ij}{\gcd(i,j)\gcd(i,j)})^{f(type)} \] 也就是说我们需要算出以下四项式子的值: \[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{f…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==p] $ 由套路: \(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}…
https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么我们就需要引入一个整除分块! 首先预处理欧拉函数的前缀和,然后丢进分块里面搞一搞. 那么就是 \(O(n+t\sqrt{n})\) #include<bits/stdc++.h> using namespace std; #define ll long long #define N 4000005…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)=i\) 的对数 那么答案就是 \(f(d)\) 构造一个函数 \(g(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)|i\) 的对数 于是…
整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右边界为$\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor$ 这样时间复杂度就是$O(\sqrt{n})$ 如果是类似$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i \ opt \ f(\lfloor{m/i} \r…
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: \(ans=\sum_{i=1}^{a}{\sum_{j=1}^{b}{[gcd(i,j)==d]}}\) 我们发现后面那个东西(只有\(gcd(i,j)==d\) 时才为一)跟莫比乌斯很像,莫比乌斯是(只有$n==$1 才为一),所以我们再尝试转化一下(把d转化成1): \(ans=\sum_{i…