Spark中自定义累加器Accumulator】的更多相关文章

1. 自定义累加器 自定义累加器需要继承AccumulatorParam,实现addInPlace和zero方法. 例1:实现Long类型的累加器 object LongAccumulatorParam extends AccumulatorParam[Long]{ override def addInPlace(r1: Long, r2: Long) = { println(s"$r1\t$r2") r1 + r2 } override def zero(initialValue:…
通过继承AccumulatorV2可以实现自定义累加器. 官方案例可参考:http://spark.apache.org/docs/latest/rdd-programming-guide.html#accumulators 下面是我自己写的一个统计卡种数量的案例. package com.shuai7boy.myscalacode import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.util.Acc…
原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳.然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速度很快(通常比…
评价分类模型的性能时需要用到以下四个指标 最开始使用以下代码计算,发现代码需要跑近一个小时,而且这一个小时都花在这四行代码上 # evaluate model TP = labelAndPreds.filter(lambda (v, p): (v == 1 and p == 1)).count() FP = labelAndPreds.filter(lambda (v, p): (v == 0 and p == 1)).count() TN = labelAndPreds.filter(lamb…
累加器(accumulator)是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执行过程中的事件进行计数. Spark内置的提供了Long和Double类型的累加器.下面是一个简单的使用示例,在这个例子中我们在过滤掉RDD中奇数的同时进行计数,最后计算剩下整数的和. val sparkConf = new SparkConf().setAppName("Test").setMaster(&q…
一.累加器简介 在Spark中如果想在Task计算的时候统计某些事件的数量,使用filter/reduce也可以,但是使用累加器是一种更方便的方式,累加器一个比较经典的应用场景是用来在Spark Streaming应用中记录某些事件的数量. 使用累加器时需要注意只有Driver能够取到累加器的值,Task端进行的是累加操作. 创建的Accumulator变量的值能够在Spark Web UI上看到,在创建时应该尽量为其命名,下面探讨如何在Spark Web UI上查看累加器的值. 示例代码: p…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
Spark2.0 自定义累加器 在2.0中使用自定义累加器需要继承AccumulatorV2这个抽象类,同时必须对以下6个方法进行实现: 1.reset 方法: 将累加器进行重置; abstract defreset(): Unit Resets this accumulator, which is zero value. 2.add 方法: 向累加器中添加另一个值; abstract defadd(v: IN): Unit 3.merge方法: 合并另一个类型相同的累加器; abstract …
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…