Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support Vector Machine Reasons behind Large-Margin Hyperplane Summary…
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support Vector Machine Reasons behind Large-Margin Hyperplane Summary…
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题. 支持向量机学习方法包含构建由简至繁的模型:线…
第一阶段技法: large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,dual problem(解对偶问题),kernel trick,kernel logistic regression, 主要思路是:(这里不区分线性与非线性,差别只是特征空间转换,X空间与Z空间的关系) 1. 从PLA出发,对于二维平面的二分类问题,PLA可能得出一堆能够正确分类的直线,但是哪一条直线…
首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下面开始一步步说怎么找到largest-margin separating hyperplane. 接下来,林特意强调了变量表示符号的变化,原来的W0换成了b(这样的表示利于推导:觉得这种强调非常负责任,利于学生听懂,要不然符号换来换去的,谁知道你说的是啥) 既然目标是找larger-margin s…
Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summary of Kernel Models Map of Linear Models Map of Kernel Models possible kernels: polynomial, Gaussian, : : :, your design (with Mercer's condition), c…
可供使用现成工具:Matlab SVM工具箱.LibSVM.SciKit Learn based on python 一 问题原型 解决模式识别领域中的数据分类问题,属于有监督学习算法的一种. 如图所示的二分类问题,A,B为决策面(二维空间中是决策线),每个决策面对应一个线性分类器方案,分类间隔越大则SVM分类器的性能越优(A>B),而具有最大间隔的分类方案则是最优决策面.SVM正是要寻找这样的最优解,虚线穿过的向量点就是支撑向量(对应A有三个支撑向量,一红二蓝).优化对象看上去似乎成了决策面的…
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的分类算法.关于它的发展历史,直接引用Wikipedia中的,毕竟本文主要介绍它的推导过程,而不是历史发展. The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 196…
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习.分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题.作者以为,类似的根据样本进行学习的方法还有基于案例的推理(Case-Based Reasoning),决策树归纳算法C4.5等,以后将详细阐述这两种方法. (2)过学习问题:训练误差过小导致推广能力下降,即真实风险的增加. (…
1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别(y可以取或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( $W^T$中的T代表转置): $W^Tx+b=0$ 这个可以说是我们熟悉的logistic regression的变形. Logistic…