一个InnoDB性能超过Oracle的调优Case】的更多相关文章

年前抽空到兄弟公司支援了一下Oracle迁移MySQL的测试,本想把MySQL调优到接近Oracle的性能即可,但经过 @何_登成 @淘宝丁奇 @淘宝褚霸 @淘伯松 诸位大牛的指导和帮助(排名不分先后,仅按第一次为此CASE而骚扰的时间排序),不断修正方案,最终获得了比Oracle更好的性能,虽然是个特殊场景,但是我觉得意义是很广泛的,值得参考,遂记录于此.所有涉及表结构和具体业务模型的部分全部略去,也请勿咨询,不能透露,敬请谅解. 目录 (Contents) [隐藏 (Hide)] 1 一.测…
Oracle SQL 调优健康检查脚本 我们关注数据库系统的性能,进行数据库调优的主要工作就是进行SQL的优化.良好的数据架构设计.配合应用系统中间件和写一手漂亮的SQL,是未来系统上线后不出现致命性能问题的有力保证. 在CBO时代,一个SQL的执行计划是多样的.影响执行计划的因素也从过去RBO时代的SQL书写规则变为综合性因素.这为我们生成更加优秀执行计划提供了基础,同时也给我们进行调优带来的很多麻烦. 目前我们通常的做法,是通过AWR报告或者调试手段,发现某某SQL有问题,之后从Librar…
目录 一.前言 二.注意点 三.Oracle执行计划 四.调优记录 @ 一.前言 本博客只记录工作中的一次oracle sql调优记录,因为数据量过多导致的查询缓慢,一方面是因为业务太过繁杂,关联了太多表.面对复杂的业务场景,确实有些情况是需要关联很多表的.当然有些情况是可以将业务实现放在Java代码里,有些情况可以不要关联很多表. 二.注意点 对于SQL调优,不要马上就说加索引什么的,加索引不一定就能解决问题的,加错索引,反而会导致查询变慢,注意加索引的同时也会影响数据库写数据的速度. 三.O…
MySQL对于很多Linux从业者而言,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多的查询优化工作实际上就是遵循一些原则让MySQL的优化器能够按照预想的合理方式运行而已. 今天我们特别邀请了资深的Linux运维老司机惨绿少年Linux来给大家体验MySQL的优化实战,助你高薪之路顺畅. 图 - MySQL查询过程 1.2 优化的哲学 优化有风险,涉足需谨慎 1.2.1 优化可能带来的问题 优化…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.数据倾斜只会发生在shuffle过程中.常用的并且可能会触发shuffle操作的算子:distinct.groupByKey.reduceByKey.aggregateByKey.join.cogroup.repartition等. 表现:Spark作业看起来会运行得非常…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
目录 一.分区表简介 二.分区表优势 三.分区表分类 3.1 范围分区 3.2 列表分区 3.3 散列分区 3.4 组合分区 四.分区相关操作 五.分区相关查询 附录:分区表索引失效的操作 一.分区表简介 分区通过让您将它们分解为更小且更易于管理的分区(称为分区)来解决支持非常大的表和索引的关键问题.不需要修改SQL查询和DML语句以访问分区表.但是,在定义分区之后,DDL语句可以访问和操作个别分区,而不是整个表或索引.这就是分区可以简化大型数据库对象的可管理性的方式.此外,分区对应用程序完全透…