# -*- coding: UTF-8 -*- import sys import numpy as np import pandas as pd import jieba import jieba.analyse import codecs #设置pd的显示长度 pd.set_option('max_colwidth',500) #载入数据 rows=pd.read_csv('datas1.csv', header=0,encoding='utf-8',dtype=str) #载入停用词 ji…
简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb…
问题小结 1.安装 需要用到python,根据python2.7选择适当的安装包.先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install 若需要安装到myeclipse, 1.首先需要myeclipse能支持python,安装pydev.不同的pydev对于环境的要求不同,注意看jre的要求.   这一步的操作可以参考 http://blog.csdn.net/cssmhyl/article/details/2281…
python安装Jieba中文分词组件 1.下载http://pypi.python.org/pypi/jieba/ 2.解压到解压到python目录下: 3.“win+R”进入cmd:依次输入如下代码: C:\Users\Administrator>cd D:\softwareIT\Python27\jieba-0.39 C:\Users\Administrator>d: D:\softwareIT\Python27\jieba-0.39>python setup.py install…
  jieba中文分词¶   中文与拉丁语言不同,不是以空格分开每个有意义的词,在我们处理自然语言处理的时候,大部分情况下,词汇是对句子和文章的理解基础.因此需要一个工具去把完整的中文分解成词. jieba是一个分词起家的中文工具.   基本分词函数与用法¶   安装:pip install jieba(全自动安装方式成功,其他安装方式未尝试) 函数: jieba.cut()三个参数 :需要分词的字符串 :cut_all参数用来控制是否采用全模式,默认是精确模式 :HMM参数用来控制是否使用HM…
目录 1 分词器概述 1.1 分词器简介 1.2 分词器的使用 1.3 中文分词器 1.3.1 中文分词器简介 1.3.2 Lucene提供的中文分词器 1.3.3 第三方中文分词器 2 IK分词器的使用 2.1 配置pom.xml文件, 加入IK分词器的依赖 2.2 修改索引流程的分词器 2.3 修改检索流程的分词器 2.4 重新创建索引 3 扩展中文词库 3.1 加入IK分词器的配置文件 3.2 增加扩展词演示(扩展: 人民邮电出版社) 3.3 增加停用词演示(增加: 的.和) 1 分词器概…
一.Lucene提供的分词器StandardAnalyzer和SmartChineseAnalyzer 1.新建一个测试Lucene提供的分词器的maven项目LuceneAnalyzer 2. 在pom.xml里面引入如下依赖 <!-- lucene 核心模块 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId&…
一.结巴中文分词采用的算法 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 二.结巴中文分词支持的分词模式 目前结巴分词支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析:全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:搜索引擎模式,在精确模式的基础上,对长词再次切分…
以下代码对鲁迅的<祝福>进行了词频统计: import io import jieba txt = io.open("zhufu.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word,0) + 1 i…
import jieba 精确模式,试图将句子最精确地切开,适合文本分析:全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. .cut() sentence 需要分词的字符串 cut_all=F 是否采用全模式(否则使用精确模式) HMM=T 是否使用HMM模型(可识别不在词典中的词) .cut_for_search() (sentence, HMM=T) 搜索引擎模式 .load_…