大数据 --> CAP原理和最终一致性】的更多相关文章

CAP原理和最终一致性 CAP原理和最终一致性(Eventually Consistency)…
在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick).在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子.CAP原理中,有三个要素: 一致性(Consistency) 可用性(Availability) 分区容忍性(Partition tolerance) CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布…
CAP原理中,有三个要素: 一致性(Consistency) 可用性(Availability) 分区容忍性(Partition tolerance) CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布式数据系统,就是在一致性和可用性之间取一个平衡.对于大多数web应用,其实并不需要强一致性,因此牺牲一致性而换取高可用性,是目前多数分布式数据库产品的方向. 当然,牺…
CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布式数据系统,就是在一致性和可用性之间取一个平衡.对于大多数web应用,其实并不需要强一致性,因此牺牲一致性而换取高可用性,是目前多数分布式数据库产品的方向. 当然,牺牲一致性,并不是完全不管数据的一致性,否则数据是混乱的,那么系统可用性再高分布式再好也没有了价值.牺牲一致性,只是不再要求关系型数据库中的强一致性,而是…
转载自:http://www.blogjava.net/hello-yun/archive/2012/04/27/376744.html https://blog.csdn.net/c289054531/article/details/15337575 CAP原理中,有三个要素: 一致性(Consistency) 可用性(Availability) 分区容忍性(Partition tolerance) CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
Hadoop原理 分为HDFS与Yarn两个部分.HDFS有Namenode和Datanode两个部分.每个节点占用一个电脑.Datanode定时向Namenode发送心跳包,心跳包中包含Datanode的校验等信息,用来监控Datanode.HDFS将数据分为块,默认为64M每个块信息按照配置的参数分别备份在不同的Datanode,而数据块在哪个节点上,这些信息都存储到Namenode上面.Yarn是MapReduce2,可以集成更多的组件,如spark.mpi等.MapReduce包括Job…
关系型数据库的局限 NoSql出现在关系型数据库之后,主要是为了解决关系型数据库的短板,我们先来看看随着软件行业的发展,关系型数据库面临了哪些挑战: 1.高并发 一个最典型的就是电商网站,例如双11,几亿大军的点击造成在某一时刻的并发量是很高的,传统的关系型数据库肯定已经是不堪重负了,如Oracle的Session数量推荐的才只有500. 2.高效率存储海量数据 大数据时代,数据量已经不是用GB.TB来衡量了,而是EB.ZB了,面对这海量的数据,如何高效率的存储这些数据,关系型数据库无法解决这个…
5.1 NoSQL概论 最初:反SQL 概念演变,现在:Not only SQL 特点: 1.灵活的可扩展性 所以支持海量数据存储 2.灵活的数据模型 例如:HBase 3.和云计算的紧密结合 (一)nosql兴起原因: 1.关系性数据库无法满足web2.0的需求; 传统的关系数据库优点: 1.非常完备的关系理论基础 2.具有事务机制的支持 3.高效的查询优化机制 传统的关系数据库性能上的缺陷: 1.无法满足海量数据的管理需求: 互联网时代,数据产生速度非常快,那么庞大的数据如果还是按照传统的关…
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里的每个目标应用同一个操作.即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在…