机器学习实战 之 KNN算法】的更多相关文章

改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技巧.我们都知道python中有Numby和Scipy这两个库,还有前段时间写的matplot库,绘图用的,大家可以参考下,实际这个算法是看懂之前的一些算法的实现. 上面我就简单介绍下这个算法实现,首先我们先肯定一个事前准备好的矩阵,这个多是事前聚类出来的或者通过专家估计出来的值. 为了这个分类矩阵和…
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于python 2.7的,但是我安装的是python 3.6.2. 所以很关键的是,你必须得有一定的python基础.这里我推荐runoob的py3教程,通俗易懂.http://www.runoob.com/python3/python3-tutorial.html 注意:python2和python3是不兼容的 p…
机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplotlib可以认为是python…
本系列都是参考<机器学习实战>这本书,只对学习过程一个记录,不做详细的描述! 注释:看了一段时间Ng的机器学习视频,感觉不能光看不练,现在一边练习再一边去学习理论! KNN很早就之前就看过也记录过,在此不做更多说明,这是k-means之前的记录,感觉差不多:http://www.cnblogs.com/wjy-lulu/p/7002688.html 1.简单的分类 代码: import numpy as np import operator import KNN def classify0(i…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类点之间的距离 按照距离升序排序 选出距离最小的kkk个点 计算这kkk个点所在类别出现的频率(次数) 返回出现频率最高的点的类别 代码的实现: 首先导入numpy模块和operator模块,建立一个数据集 from numpy import * import operator def createD…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…
为什么电脑排版效果和手机排版效果不一样~ 目前只学习了python的基础语法,有些东西理解的不透彻,希望能一边看<机器学习实战>,一边加深对python的理解,所以写的内容很浅显,也许还会有一部分错误,希望得到大家的指正.在看到书上第一个KNN算法,实现简单的电影分类的时候,就遇到了很多问题,在这里把解决方法总结下来,时常翻看,加深理解.最近时间比较充裕,希望每天都能在这里总结输出,逐渐提升自己的能力!这样总有一天,我能尽情的吃牛肉干不心疼钱,嗯! 我用的是python3,<机器学习实战…
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用距离来进行判别 程序清单2-1看不太明白,于是把具体的inX,dataSet,labels,k带进去大致明白了意思,这里不做演示 书上用字典进行存储,然后对字典的值进行排序,这里不太清楚故去学习了一下 这些理清楚之后,首先来看如何对字典的值进行排序: dict1 = {'a': 1, 'b': 4,…
1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签.一般来说,只选择样本数据集中前 $k$ 个最相似的数据,这就是KNN算法 $k$ 的出处, 通常 $k$ 是不大于20的整数.最后,选择 $k$ 个最相似数据中出现次数最多的分类,作为新数据的分类. 2.实验准备: Python s…