tensorflow的boolean_mask函数】的更多相关文章

在mask中定义true,保留与其进行运算的tensor里的部分内容,相当于投影的功能. mask与tensor的维度可以不相同的,但是对应的长度一定要相同,也就是要有一一对应的部分: 结果的维度 = tensor维度 - mask维度 + 1 以下是参考连接的例子,便于理解:…
Tensorflow Batch normalization函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 stackoverflow上tensorflow实现BN的不同函数的解释 最近在运行程序时需要使用到Batch normalization方法,虽然网上有很多资料,但是说法各异而且没有完全准确的,很多使用了Tensorflow中TF.slim高层封装,自己不是很明白.现在我将自己搜集的资料进行整理,便于以后查阅. 关于Batch normalization Tens…
在分析Attention-over-attention源码过程中,对于tensorflow.nn.bidirectional_dynamic_rnn()函数的总结: 首先来看一下,函数: def bidirectional_dynamic_rnn( cell_fw, # 前向RNN cell_bw, # 后向RNN inputs, # 输入 sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度) initial_state_fw=None, # 前向的…
TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中,然后通过 tf.get_collection 获取一个集合里面的所有资源(如张量,变量,或者运行TensorFlow程序所需的队列资源等等) 集合名称 集合内容 使用场景 tf.GraphKeys.VARIABLES 所有变量 持久化TensorFlow模型 tf.GraphKeys.TRAINA…
1.tf.cast(x,dtype,name) 此函数的目的是为了将x数据,准换为dtype所表示的类型,例如tf.float32,tf.bool,tf.uint8等 example:  import tensorflow as tf x = tf.Variable([True,True,False,False]) y = tf.cast(x,dtype = tf.float32) sess = tf.Session() init = tf.global_variables_initialize…
转载链接:https://www.zhihu.com/question/51325408/answer/125426642来源:知乎 这个问题无外乎有三个难点: 什么是sum 什么是reduce 什么是维度(indices, 现在均改为了axis和numpy等包一致) sum很简单,就是求和,那么问题就是2和3,让我们慢慢来讲.其实彻底讲清楚了这个问题,很多关于reduce,维度的问题都会恍然大悟. 0. 到底操作哪个维度?? sum这个操作完全可以泛化为任意函数,我们就以sum为例,来看看各种…
一下均在ubuntu环境下: (1)方法一,使用help()函数: 比如对于tf.placeholder(),在命令行中输入import tensorflow as tf , help(tf.placeholder)即可查看用法,再按"q"即可退出…
激活函数的作用如下-引用<TensorFlow实践>: 这些函数与其他层的输出联合使用可以生成特征图.他们用于对某些运算的结果进行平滑或者微分.其目标是为神经网络引入非线性.曲线能够刻画出输入的复杂的变化.TensorFlow提供了多种激活函数,在CNN中一般使用tf.nn.relu的原因是因为,尽管relu会导致一些信息的损失,但是性能突出.在刚开始设计模型时,都可以采用relu的激活函数.高级用户也可以自己创建自己的激活函数,评价激活函数是否有用的主要因素参看如下几点: 1)该函数是单调的…
更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参考,对应的图片是输出的结果: import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np %matplotlib inline path = '/home/…
函数1:tf.nn.conv2d是TensorFlow里面实现卷积的函数,实际上这是搭建卷积神经网络比较核心的一个方法 函数原型: tf.nn.conv2d(input,filter,strides,padding,use_cudnn_on_gpu=None, Name=None) 参数解释: 第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个bat…
tf.assign assign ( ref , value , validate_shape = None , use_locking = None , name = None ) 定义在:tensorflow/python/ops/state_ops.py 参见指南:变量>变量帮助函数 通过将 "value" 赋给 "ref" 来更新 "ref". 此操作输出在赋值后保留新值 "ref" 的张量.这使得更易于链接需要…
TensorFlow 中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个或多个集合中,然后通过 tf.get_collection 获取一个集合里面的所有资源(如张量,变量,或者运行TensorFlow程序所需的队列资源等等).比如,通过 tf.add_n(tf.get_collection('losses')) 获得总损失. 集合名称 集合内容 使用场景 tf.GraphKeys…
tf.random_uniform 函数 random_uniform( shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ops.py. 请参阅指南:生成常量,序列和随机值>随机张量 从均匀分布中输出随机值. 生成的值在该 [minval, maxval) 范围内遵循均匀分布.下限 minval 包含在范围内,而上限 maxval 被排除…
卷积函数 TensorFlow学习备忘录 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) Args input: A 4-D Tensor. 需要计算卷积的图像,其shape是[batch, height, width, channels].Tensor shape可以由data_format设定.Type必须是"half", "…
1.tf.constant tf.constant用来定义一个常量,所谓常量,广义上讲就是“不变化的量”.我们先看下官方api是如何对constant函数来定义的: tf.constant( value, dtype=None, shape=None, name='Const', verify_shape=False ) 其中包括5个输入值: value(必填):常量的值,可以是一个数,也可以是一个向量或矩阵. dtype(非):用来指定数据类型,例如tf.float32类型或tf.float6…
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在…
1.tf.multiply()函数:矩阵对应元素相乘 官网定义: multiply(x,y,name=None) 参数: x: 一个类型为:half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128的张量. y: 一个类型跟张量x相同的张量. 注意: (1)该函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法 (2)两个相乘的数必须是相同的类型,否则会报错.…
官网默认定义如下: one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None) 该函数的功能主要是转换成one_hot类型的张量输出. 参数功能如下: 1)indices中的元素指示on_value的位置,不指示的地方都为off_value.indices可以是向量.矩阵. 2)depth表示输出张量的尺寸,indices中元素默认不超过(depth-1),如果超过,输出为[0,…
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务. 准备工作 对于函数逼近,这里的损失函数是 M…
本文记录了在TensorFlow框架中自定义训练函数的模板并简述了使用自定义训练函数的优势与劣势. 首先需要说明的是,本文中所记录的训练函数模板参考自https://stackoverflow.com/questions/59438904/applying-callbacks-in-a-custom-training-loop-in-tensorflow-2-0中的回答以及Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor…
tf.abs() 求tensor中数据的绝对值 tf.sign() 每一个数据都执行sigmod函数,得到对应的数值 tf.reduce_sum() 对不同维度数据求和.注意:1:求和每一行 0:求和每一列 tf.cast() 数值转换 演示: def mytest_split(): A = tf.truncated_normal(shape=[5,6], dtype=tf.float32) used = tf.sign(tf.abs(A)) length = tf.reduce_sum(use…
1.tf.constant(value,dtype=None,shape=None,name='Const') 注意这个函数创造的是一个常数tensor,而不是一个具体的常数 value:即可以是list,也可以是value dtype:对应生成的tensor里的元素的类型 # Constant 1-D Tensor populated with value list. tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]…
卷积函数是卷积神经网络(CNN)非常核心和重要的函数,在搭建CNN时经常会用到,因此较为详细和深入的理解卷积函数具有十分重要的意义. tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None):在给定4维的输入和过滤器的张量时,计算一个2维卷积. 参数详解: input:输入的参数或者说是图像tenors,input=[batch,in_height,in_width,in_channels],b…
获取Tensor维度的两种方法: Tensor.get_shape() 返回TensorShape对象, 如果需要确定的数值而把TensorShape当作list使用,肯定是不行的. 需要调用TensorShape的as_list()方法, 需要调用TensorShape.as_list()方法来获取维度数值. 来实践一下: import tensorflow as tf a = tf.zeros(shape=[10,20]) b = a.get_shape() c = b.as_list()…
!pip install gym import random import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense, Dropout, Activation from keras.models import Sequential from keras.optimizers import Adam from keras import backend as K from collection…
觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.image.decode_png(contents, channels=None, name=None) Decode a PNG-encoded image to a uint8 tensor. 将一个png编码的图像解码成一个uint8张量. The attr channels indicates the desired number of color channels for the decoded image. 参数"chan…
今天我们通过tensorflow来实现一个简单的小例子: 假如我定义一个一元一次函数y = 0.1x + 0.3,然后我在程序中定义两个变量 Weight 和 biases 怎么让我的这两个变量自己学习然后最终学习的成果就是让Weight  ≈ 0.1和 biases ≈ 0.3. 开始吧! import tensorflow as tf import numpy as np # create data x_data = np.random.rand(100).astype(np.float32…
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU. 下面是一些…
tensorflow 旋转矩阵的函数实现方法 关键字: rot90, tensorflow 1. 背景 在做数据增强的操作过程中, 很多情况需要对图像旋转和平移等操作, 针对一些特殊的卷积(garbo conv)操作,还需要对卷积核进行旋转操作. 在tensorflow中似乎没有实现对4D tensor的旋转操作. 严格的说: tensorflow对tensor的翻转操作并未实现, 仅有针对3D tensor的tf.image.rot() 而在大多数的情况下使用的是4D形式的tensor, [B…
原文地址: https://blog.csdn.net/weixin_36670529/article/details/100191674 ---------------------------------------------------------------------------------------------- 调试程序的时候,经常会需要检查中间的参数,这些参数一般是定义在model或是别的函数中的局部参数,由于tensorflow要求先构建计算图再运算的机制,也不能定义后直接p…