Monkey King(左偏树 可并堆)】的更多相关文章

题目链接:HDU - 1512 Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can't avoid quarrelling, and it only happens between two monkeys who does not kn…
ZOJ2334 用左偏树实现优先队列最大的好处就是两个队列合并可以在Logn时间内完成 用来维护优先队列森林非常好用. 左偏树代码的核心也是两棵树的合并! 代码有些细节需要注意. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<vector> #include<algorithm>…
原题链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1389 大致题意:N只相互不认识的猴子(每只猴子有一个战斗力值) 两只不认识的猴子之间发生冲突,两只猴子会分别请出它们认识的最强壮的 猴子进行决斗.决斗之后这,两群猴子都相互认识了. 决斗的那两只猴子战斗力减半...有m组询问 输入a b表示猴子a和b发生了冲突,若a,b属于同一个集合输出-1 否则输出决斗之后这群猴子(已合并)中最强的战斗力值... 具体思路:用并查…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - ZOJ2334 题目传送门 - HDU1512 题意概括 在一个森林里住着N(N<=10000)只猴子.在一开始,他们是互不认识的.但是随着时间的推移,猴子们少不了争斗,但那只会发生在互不认识(认识具有传递性)的两只猴子之间.争斗时,两只猴子都会请出他认识的猴子里最强壮的一只(有可能是他自己)进行争斗.争斗后,这两只猴子就互相认识.每个猴子有一个强壮值,但是被请出来的那两只猴子进行争斗后,他们的强壮值都会减…
题意:在一个森林里住着N(N<=10000)只猴子.在一开始,他们是互不认识的.但是随着时间的推移,猴子们少不了争斗,但那只会发生在互不认识 (认识具有传递性)的两只猴子之间.争斗时,两只猴子都会请出他认识的猴子里最强壮的一只(有可能是他自己)进行争斗.争斗后,这两只猴子就互相认识. 每个猴子有一个强壮值,但是被请出来的那两只猴子进行争斗后,他们的强壮值都会减半(例如10会减为5,5会减为2).现给出每个猴子的初始强壮值, 给出M次争斗,如果争斗的两只猴子不认识,那么输出争斗后两只猴子的认识的猴…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1512 很简单的左偏树: 但突然对 rt 的关系感到混乱,改了半天才弄对: 注意是多组数据! #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,m,s[maxn],rt[maxn],ls[maxn],rs[maxn…
Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can't avoid quarrelling, and it only happens between two monkeys who does not know each other. A…
[题目分析] 也是堆+并查集. 比起BZOJ 1455 来说,只是合并的方式麻烦了一点. WA了一天才看到是多组数据. 盲人OI (- ̄▽ ̄)- Best OI. 代码自带大常数,比启发式合并都慢 [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map> #include <…
struct LeftTree{ int l,r,val,dis; }t[N]; int fa[N]; inline int Find(int x){ return x == fa[x] ? x : fa[x] = Find(fa[x]); } inline int Merge(int x, int y){ if(!x) return y; if(!y) return x; if(t[x].val < t[y].val || (t[x].val == t[y].val && x &g…
左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作) 操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作) 输入格式: 第一行包含两个正整数N.M,分别表示一开始小根堆的个数和接下来…