opencv算法学习】的更多相关文章

1.改变图像的亮度和对比度: 算法介绍:对每一点像素值的r,g,b,值进行乘法和加法的运算. 代码使用: ; y < image.rows; y++ ) { ; x < image.cols; x++ ) { ; c < ; c++ ) { new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta ); } } } 2.ope…
1.直方图:图片中像素值分布情况的坐标图. 直方图均衡化:按一定规律拉伸像素值,提高像素值少的点,增加原图的对比度,使人感觉更清晰的函数. equalizeHist( src, dst ); 2.haar角点检测:首先说边缘检测是检测出相邻像素点的变化,而角点则是两个方向上的像素变化的角点,我们称为角点.常用作特征点的检测,人脸识别等. 角点检测的函数: cornerHarris_demo( , );//Harris-Stephens方法检测角点 goodFeaturesToTrack(0,0)…
结合OpenCV中Camshitf算法学习,做一些简单的补充,包括: 实现全自动跟随的一种方法 参考opencv中的相关demo,可以截取目标物体的图片,由此预先计算出其色彩投影图,用于实际的目标跟随. Mat hsv,mask,hue,hist; cvtColor( cut_image, hsv, CV_BGR2HSV );//cut_image为提前截取的目标图片 inRange( hsv, Scalar( MIN( _hmin, _hmax ), MIN( _smin, _smax ),…
今天上午,结合OpenCV自带的camshitf例程,简单的对camshitf有了一个大致的认识和理解,现总结如下: 1:关于HSV H指hue(色相).S指saturation(饱和度).V指value(色调). 色相(H)是色彩的基本属性,就是平常所说的颜色名称,如红色.黄色等: 饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值: 明度(V)取0-100%. RGB 和 CMYK 分别是加法原色和减法原色模型,以原色组合的方式定义颜色,而 HSV 以人类更熟悉的方…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
大清早的我们就来做一个简单有趣的图像处理算法实现,作为对图像处理算法学习的开端吧.之所以有趣就在于笔者把算法处理的各个方式的处理效果拿出来做了对比,给你看到原图和各种处理后的图像你是否能够知道那幅图对应那种算法模式呢?嘻嘻,拭目以待吧 平滑的意义: 图像平滑image smoothing:压制.弱化或消除图像中的细节.突变.边缘和噪声,就是图像平滑化. 图像平滑是对图像作低通滤波,可在空间域或频率域实现.空间域图像平滑方法主要用低通卷积滤波.中值滤波等:频率域图像平滑常用的低通滤波器有低通梯形滤…
OpenCV入门学习笔记 参照OpenCV中文论坛相关文档(http://www.opencv.org.cn/) 一.简介 OpenCV(Open Source Computer Vision),开源计算机视觉库 提供了很多函数,实现了很多计算机视觉算法,算法从最基本的滤波到高级的物体检测皆有涵盖 学习OpenCV所需要的基本知识 C/C++编程基础(编程能力) 了解算法原理(理论基础知识) 提升理论基础知识,所要了解的课程 数字图像处理 计算机视觉 模式识别 OpenCV知识一个算法库,我们并…
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…
OpenCV图像处理学习笔记-Day1 目录 OpenCV图像处理学习笔记-Day1 第1课:图像读入.显示和保存 1. 读入图像 2. 显示图像 3. 保存图像 第2课:图像处理入门基础 1. 基本概念 2. RGB转灰度 第3课:像素处理 1. 读取像素 2. 修改像素 第4课:使用numpy进行像素操作 1. 读取像素 2. 修改像素 第5课:获取图像属性 1. 形状:行.列.通道数 2. 像素数目 3. 获取图像类型 第6课:图像ROI 1. ROI(region of interest…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 在数字图像处理中,有两个经典的变换被广泛应用--傅里叶变换和霍夫变化.其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像降噪,图像增强等处理,这一篇主要学习傅里叶变换,后面在学习霍夫变换. 下面学习一下傅里叶变换.有人说傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前…