[CF960G] Bandit Blues】的更多相关文章

题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\begin{bmatrix} n \\ i \end{bmatrix}x^{i}\] 分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\) 其实还有比较优美的倍增\(fft\)的\(O(…
题意 给你三个正整数 \(n,a,b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. Sol 首先可以设一个 \(DP\) 状态 \(f(i,j)\) 表示,长度为 \(i\) 的排列,有 \(j\) 个前缀最大值的方案数. 那么转移就是枚举新放一个最小值,只有放在序列…
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom {A+B-2} {A - 1}\) 注意到这题的复杂度瓶颈是求第一类斯特林数,因为求组合数可以\(O(N)\),但是暂时我们求第一类斯特林数只有\(O(N^2)\)的方法 考虑第一类斯特林数的转移式子:\(\begin{bmatrix} a \\ b \end{bmatrix} = \begin{b…
题面1 题面2 两个题推导是一样的,具体实现不一样,所以写一起了,以FJOI 2016 建筑师 的题面为标准 前后在组合意义下一样,现在只考虑前面,可以发现看到的这a个建筑将这一段划分成了a-1个区间,区间里的数随意填. 看起来可以用组合数算,但是还要考虑看到的建筑,所以我们把每个建筑和它后面这段区间合起来看.设区间的长度是len,这就是一个len+1个数的圆排列(等于len!,相当于固定一个开头后面随便排) 这样考虑前后就是将n-1个数划分为a+b-2个全排列,n-1是因为最高的那个在两边都没…
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. \(\color{#0066ff}{输入格式}\) 三个整数n,a,b \(\color{#0066ff}{输出格式}\…
传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i-1,j-1)+(i-1)\times f(i-1,j)\) 这个就是第一类斯特林数 第一类斯特林数中\(S_1(n,m)\)是\(\prod_{i=0}^{n-1}(x+i)\)中\(x^m\)的系数,可以用分治\(FFT\)做到\(O(n\log^2n)\)的复杂度 首先\(n\)肯定是前缀最大值…
Solution: ​ 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f(i,j)\rightarrow f(i + 1, j + 1)\\ f(i, j)\times i\rightarrow f(i + 1, j) \] ​ 即将 \(i+1\) 放在那哪个位置,会对后面产生贡献,综合一下,\(f(i, j)\) 就是第一类斯特林数 \(i \brack j\) .…
题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大值的最后一个. 那么枚举一下最大值的位置为 \(i\),那么左右两边各选一些数的方案数为 \(\binom {n-1}{i-1}\). 然后,左边有 \(i-1\) 个数,要分成 \(A-1\) 个部分,每一个部分的第一个数是所有数中最大的,并且每一个部分之间的最大值要递增. 可以发现这个问题等价于…
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块(随便取的名字) 考虑在这个最大值左边有\(A-1\)个单调块,右边有\(B-1\)个单调块,如果这些块在左右两边按序排好的话就是一种合法方案 那我们只需要找出\(A+B-2\)个单调块,并且将其中拿出\(A-1\)个放在左边,因此答案有一项就是\(C_{A+B-2}^{A-1}\) 考虑怎么从除了最…
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI]建筑师的加强版本. 显然每一个前缀最大值和一段连续的区间构成了一个环排列,显然每个前缀最大值就是这个环中的最大值.而全局最大值一定把前后缀最大值分开. 所以答案考虑除最大值外,左侧需要\(a-1\)个前缀最大值,右侧需要\(b-1\)个前缀最大值.也就是一共要\(a+b-2\)个环,那么这一部分的贡…