在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度则比LSI快,它是怎么做到的呢? 1. 非负矩阵分解(NMF)概述 非负矩阵分解(non-negative matrix factorization,以下简称NMF)是一种非常常用的矩阵分解方法,它可以适用于很多领域,比如图像特征识别,语音识别等,这里我们会主要关注于它在文本主…