首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
tensorflow学习
】的更多相关文章
Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
用tensorflow学习贝叶斯个性化排序(BPR)
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简单的推荐.由于现有主流开源类库都没有BPR,同时它又比较简单,因此用tensorflow自己实现一个简单的BPR的算法,下面我们开始吧. 1. BPR算法回顾 BPR算法是基于矩阵分解的排序算法,它的算法训练集是一个个的三元组$<u,i,j>$,表示对用户u来说,商品i的优先级要高于商品j.训练成…
Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱.random.shuffle() 在训练数据上推断模型:得到输出 计算损失:loss(X, Y)多种损失函数 调整模型参数:最小化损失 SGD等优化方法. 评估:70%:30% 分训练集和校验集 代码框架: 首先模型参数初始化, 然后为每个训练闭环中的运算定义一个方法:读取训练数据input,计算…
Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自动根据loss计算对应variable的导数.示例如下: loss = ... opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) init = tf.initiali…
TensorFlow学习路径【转】
作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 前言:其实TensorFlow本身仅仅是一个分布式的高性能计算框架,想要用TF做深度学习,仅仅学习这个框架本身是没有太大意义的.因此应该将TF看作技术路线中的一个核心点,去掌握整个开发所需要的必要技术,知识.尤其是深度学习的基本原理,这对日后搭建模型,模型调参以至提出新的模型都是极其有用的.…
TensorFlow学习线路
如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 有同学反应资源太多不知道从何看起,或者有点基础了想快速上手,因此就直接把几个比较好的教程放在这里,后面的内容作为参考. Stanford的CS 20SI课程,专门针对TensorFlow的课程,…
tensorflow学习资料
tensorflow学习资料 http://www.soku.com/search_video/q_tensorflow?f=1&kb=04112020yv41000__&_rp=1au1hm2di2c7 http://i.youku.com/studyai…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax 这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
截图:【炼数成金】深度学习框架Tensorflow学习与应用
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络 MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 首先看下它的数学表达式:decayed_learing_rate=learing_rate*decay_rate^(gloabl_steps/decay_…
tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4*2+2 接下来是损失函数 主流的有均分误差,交叉熵,以及自定义 这里贴上课程里面的代码 # -*- coding: utf-8 -*- """ Created on Sat May 26 18:42:08 2018 @author: Administrator "&qu…
tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真实值得差距,比如sigmod或者cross-entropy 均方误差:tf.reduce_mean(tf.square(y-y_))很好理解,假如在欧式空间只有两个点的的话就是两点间距离的平方,多点就是多点误差的平方和除以对比点个数 学习率:决定了参数每次更新的幅度 反向传播训练方法:为了减小los…
tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计算图只描述过程,不执行. (2)tf中的会话 那么怎么计算呢? tensorflow有个会话是专门用来计算的 import tensorflow as tf x=tf.constant([[1.0,2.0]]) w=tf.constant([[3.0],[4.0]]) y=tf.matmul(x,w…
python tensorflow 学习
Tensorflow系列——Saver的用法:http://blog.csdn.net/u011500062/article/details/51728830 Tensorflow学习系列(二): tensorflow基础:http://blog.csdn.net/vs412237401/article/details/62039686…
《TensorFlow学习指南深度学习系统构建详解》英文PDF+源代码+部分中文PDF
主要介绍如何使用 TensorFlow 框架进行深度学习系统的构建.涉及卷积神经网络.循环神经网络等核心的技术,并介绍了用于图像数据和文本序列数据的模型.给出了分布式深度学习系统在TensorFlow 下的构建过程以及如何将训练后的模型导出和部署的方法. 学习参考: <TensorFlow学习指南:深度学习系统构建详解>英文PDF+源代码+部分中文PDF 英文完整版PDF,242页,带目录书签,彩色配图,文字可以复制粘贴: 中文部分PDF,包含第1.2.3章,文字可以复制粘贴: 配套源代码.…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu tf.nn.…
tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早期一度被认为是一种无监督的特征学习(Unsuperbised Feature Learning),模仿了人脑的对特征逐层抽象提取的过程.这…
TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
tensorflow学习笔记——VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能直接的关系,通过反复堆叠 3*3 的小型卷积核和 2*2 的最大池化层,VGGNet成功的构筑了16~19层深的卷积神经网络.VGGNet相比之前的 state-of…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
TensorFlow学习笔记(1)—— 基本概念与框架
入门框架时的常见问题 学习框架的原因? 方便.易用 学习框架的哪些知识点? 掌握一个项目的基本流程,就知道需要学习哪些知识点了 迅速学习框架的方法 根据项目每块流程的需要针对性的学 可以看官方的入门教程 TensorFlow快速入门思维导图 (图) TensorFlow的高级API TF SLIM:一个可以定义.训练和评估复杂模型的轻量库(用到的时候详细说) TF Learn(tf.contrib.learn):类似于scikit-learn的接口 其他:Keras等 TensorFlow学习要…
TensorFlow学习笔记0-安装TensorFlow环境
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz GPU: NVIDIA GeForce GTX 1050 Ti 所以本笔记记录Win10 64位系统下,TensorFlow的GPU版开发环境的搭建. TensorFlow-GPU环境安装 首先下载安装Anaconda,版本不受限制…
tensorflow 学习教程
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册2:https://data-flair.training/blogs/tensorflow-wide-and-deep-learning/ 详细的 op 数据操作 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/con…
tensorflow学习笔记二:入门基础 好教程 可用
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础 TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或…
TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数据(二维的像素网格): 卷积网络是指至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络. 卷积 前面讲过卷积, 相关算法这里直接使用. 卷积公式为:\(s(t)=\int_{-\infty}^{t}x(\tau)w(t-\tau)d\tau\),记作\(s(t)=(x*w)(t)\).…
TensorFlow学习笔记5-概率与信息论
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测…
TensorFlow学习笔记6-数值计算基础
TensorFlow学习笔记6-数值计算 本笔记内容为"数值计算的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(y\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(y'\)表示将测试向量\(x\)输入后得到的测试结果: 上溢与下溢.softmax函数 下溢:当某数值很接近于0时,有可能被舍去为0,这时下一步计算(被0除,取0的对数…
TensorFlow学习笔记4-线性代数基础
TensorFlow学习笔记4-线性代数基础 本笔记内容为"AI深度学习".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测试向量\(…