MT【257】任意存在并存】的更多相关文章

函数$f(x)=\dfrac{4x}{x+1}(x>0),g(x)=\dfrac{1}{2}(|x-a|-|x-b|),(a<b)$, 若对任意$x_1>0$,存在$x_2\le x_1$,使得$g(x_2)=f(x_1)$,则$2a+b$的最大值为____ 注:由图像知道交点为切点时满足题意.…
评:一般这个题目是先考虑$x$的存在性,再考虑$t$的任意性.最后按照动区间定轴类型处理,考虑区间和对称轴的相对位置.…
在平面四边形$ABCD$中,已知$E,F,G,H$分别是棱$AB,BC,CD,DA$的中点,若$|EG|^2-|HF|^2=1,$设$|AD|=x,|BC|=y,|AB|=z,|CD|=1,$则$\dfrac{2x+y}{z^2+8}$的最大值是______ 解答: 注:一般的任意四边形有这样的向量性质:如图$\overrightarrow{AB}+\overrightarrow{DC}=2\overrightarrow{HF}$…
已知向量$\textbf{a},\textbf{b}$满足:$|\textbf{a}|=|\textbf{b}|=1,\textbf{a}\cdot\textbf{b}=\dfrac{1}{2},\textbf{c}=(m,1-m),\textbf{d}=(n,1-n),(m,n\in R)$,存在$\textbf{a},\textbf{b}$,对于任意的实数$m,n$,不等式$|\textbf{a}-\textbf{c}|+|\textbf{b}-\textbf{d}|\ge T$ 恒成立,则…
已知$f(x)=ax^2+bx-\dfrac{1}{4}$,若存在$a,b\in R$,使得对于任意的$x\in[0,7],|f(x)|\le2$恒成立,求$|a|$的最大值____ 提示:$|ax^2+bx-\dfrac{1}{4}|\le2,$得$-\dfrac{7}{4x}\le ax+b\le \dfrac{9}{4x}$结合图像,$y=ax+b$的函数图像介于$y=-\dfrac{7}{4x}\textbf{与}y=\dfrac{9}{4x}$的图像之间,要求$|a|$的最大值.显然只…
解析: 评:$\theta=90^0$时就是正交基底下(即直角坐标系下)的距离公式.…
已知函数$f(x)=x-\dfrac{1}{1+x},g(x)=x^2-2ax+4,$若对任意$x_1\in[0,1]$,存在$x_2\in[1,2]$,使得$f(x_1)=g(x_2)$,则实数$a$的取值范围____ 分析:$f(x)$的值域包含于$g(x)$的值域中,一般做法接下来要讨论对称轴与区间端点,这里提供一种简单的方法:易知$f(x)\in[-1,\dfrac{1}{2}]$, 则存在$x\in[1,2],g(x)\le-1$ 成立.也存在$x\in[1,2],g(x)\ge\df…
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.net/read.php?tid=24754 点触摸的信息,是触摸屏这样的触摸设备向 input core 上报 MT 消息传递的.这些 MT消息,可以通过 设备文件的接口,被应用程序读取到. 将 multi-touch-protocol.txt 文档翻译了一下,有些地方感觉理解得不太正确,还请指正.可…
环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcmtk-3.6.0-win32-i386-support_MT.(注意,要下载***support的压缩文件,而不要下载上面单独列出来的支持库).将这些压缩文件解压缩到硬盘上一个单独的文件夹里,我的解压缩目录是D:\DCMTK\. 从cmake官方网站下载cmake的安装文件,我下载的是最新的2.8.…
一直没打理博客园  发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37792 来源:牛客网 首先讲真,得感谢牛客的讨论区,感谢美团给我面试的机会,感谢帮忙内推的小伙伴,楼主渣渣双非学校小硕,投过简历无数,简历被挂无数,几乎都是石沉大海,所以每次面试都感觉弥足珍贵,本来上周面完就该发个面经的,但想想还是等定下来再写吧,今天收到了电话通知,所以过来发个贴,好了,废话不多说…