题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\)条颜色为\(3\)的边的生成树的数量. ​ 对\({10}^9+7\)取模. ​ \(n\leq 50\) 题解 ​ 如果\(\forall i,c_i=1\),就可以直接用基尔霍夫矩阵计算生成树个数.但是现在有三种颜色,不妨设\(c_i=2\)的边的边权为\(x\),\(c_i=3\)的边的边权为…
非常直接地构造 由于答案与生成树计数有关,所以一定要使用矩阵树定理,但这样就不能限制每种颜色的便使用的数量 我们构造$N^2$个关于$Ans_{x,y}$的方程,枚举将红色的边拆成$x$条,将蓝色的边拆成$y$条,跑一遍矩阵树定理,就得到$$G_{x,y}=\sum\limits_{i=0}^{n-1} \sum\limits_{j=0}^{n-i-1} Ans_{i,j}\cdot x^i\cdot y^j$$然后会发现$Ans_{i,j}$可以看做这个二维多项式的系数,直接用拉格朗日插值构造…
题目大意 ​ 给你\(n,p\),求\(n\)个点组成的所有无向连通图的边数的平方和模\(p\) ​ \(n\leq 2000,p\leq {10}^9\) 题解 ​ 设\(m=\frac{n(n-1)}{2},h0_n=n\)个点无向图的个数,\(h1_n=n\)个点组成的所有无向图的边数之和,\(h2_n=n\)个点组成的所有无向图的边数的平方和,\(f0_n=n\)个点无向连通图的个数,\(f1_n=n\)个点组成的所有无向连通图的边数之和,\(f2_n=n\)个点组成的所有无向连通图的边…
Description Solution 本博客参考yww大佬的博客,为了加深理解我就自己再写一遍啦. 以下的“无向图”均无重边无自环. 定义f0[n]为n个点构成的无向图个数,f1[n]为n个点构成的无向图的总边数,f2[n]为所有(n个点构成的无向图的边数的平方)之和. g0[n]为n个点构成的连通无向图个数,g1[n]为n个点构成的连通无向图的总边数,g2[n]为所有(n个点构成的连通无向图的边数的平方)之和. 设$m[i]=i*(i-1)/2$ 每条边可以选或不选,所以$f0[i]=2^…
LINK:数列求和 每次遇到这种题目都不太会写.但是做法很简单. 终有一天我会成功的. 考虑类似等比数列求和的东西 帽子戏法一下. 设\(f(k)=\sum_{i=1}^ni^ka^i\) 考虑\(af(k)\)这个式子 两式做差. \((a-1)f(k)=n^n\cdot a^{n+1}-a+\sum_{i=2}^n{a^i((i-1)^k-i^k)}\) 右边直接二项式展开 然后 交换求和顺序可得. \((a-1)f(k)=n^k\cdot a^{n+1}-a+\sum_{j=0}^{k-1…
一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cnblogs.com/zj75211/p/8039443.html (Matrix-Tree定理) https://blog.csdn.net/u011815404/article/details/99679527(无向图生成树/MST计数) https://www.cnblogs.com/yangs…
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理,但没想清楚又被我忽略了. 其实非常简单 你对着所有的东西跑一遍生成树计数,然后你发现统计了同一个施工队的方案,然后发现可以枚举子集,就是个sb容斥了 Code: #include <cstdio> #include <cctype> #include <algorithm>…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
题目描述 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任务是尽快让幻想乡的交通体系重新建立起来. 幻想乡一共有n个地方,那么最快的方法当然是修复n-1条道路将这n个地方都连接起来. 幻想乡这n个地方本来是连通的,一共有m条边.现在这m条边由于地震的关系,全部都毁坏掉了.每条边都有一个修复它需要花费的时间,第i条边所需要的时间为ei.地震发生以后,由于幽香是一位人生经验…
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ 公司n未参加方案数) 方案数=生成树方案数 所以用矩阵树定理瞎搞 显然后面的部分可以用容斥原理求解 枚举的时候用一个数转成二进制来表示哪些公司参加/不参加 mod=1e9+7是质数所以可以在高斯消元的时候用逆元搞 #include<iostream> #include<cstdio>…