Codeforces 1017F The Neutral Zone 数论】的更多相关文章

原文链接https://www.cnblogs.com/zhouzhendong/p/CF1017F.html 题目传送门 - CF1017F 题意 假设一个数 $x$ 分解质因数后得到结果 $x=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} $ 定义 $\text{exlog}_f(x) = a_1 f(p_1) + a_2 f(p_2) + ... + a_k f(p_k)$ 给定 $A,B,C,D$ 表示 $f(x)=Ax^3+Bx^2+Cx+D$ 求 $\sum_…
Notice: unusual memory limit! After the war, destroyed cities in the neutral zone were restored. And children went back to school. The war changed the world, as well as education. In those hard days, a new math concept was created. As we all know, lo…
这题一看就筛质数就好啦, 可是这怎么筛啊, 一看题解, 怎么会有这么骚的操作. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x…
[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory limit 524288 kB Source Technocup 2020 - Elimination Round 2 Tags hashing math number theory *1900 Site https://codeforces.com/problemset/problem/1225…
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变一个数的值(注意不是真的改变),使得这个区间的gcd是小明所猜的数也算小明猜对.另一种操作就是真的修改某一点的值. 解题思路 这里我们使用线段树,维护区间内的gcd,判断的时候需要判断这个区间的左右子区间的gcd是不是小明猜的数的倍数或者就是小明猜的数,如果是,那么小明猜对了.否则就需要进入这个区间…
题目链接: http://poj.org/problem?id=2117 题目大意:统计一个范围内数的个数,要求该数能被各位上的数整除.范围2^64. 解题思路: 一开始SB地开了10维数组记录情况. 首先要求能被各位上的数整除,可以转化为被一个数整除问题. 这个数就是各位上数的最小公倍数LCM(不是GCD). 其次,处理整除问题,得转化成数位DP的余数模板.1~9的LCM最大是2520, 那么%2520,让其可以开数组进行记忆化搜索. 最后, 对于不能%2520最后结果,再%各个数位累计过来的…
Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting. The game consists of multiple rounds. Its rules are very simple: in each round, a natural number k is chosen. Then, the one who says (or barks) it fast…
Vasya is studying number theory. He has denoted a function f(a, b) such that: f(a, 0) = 0; f(a, b) = 1 + f(a, b - gcd(a, b)), where gcd(a, b) is the greatest common divisor of a and b. Vasya has two numbers x and y, and he wants to calculate f(x, y).…
Let's call the roundness of the number the number of zeros to which it ends. You have an array of n numbers. You need to choose a subset of exactly k numbers so that the roundness of the product of the selected numbers will be maximum possible. Input…
链接: http://codeforces.com/problemset/problem/955/C 题意: Q次询问(1≤Q≤1e5),每次询问给出两个整数L, R(1≤L≤R≤1e18),求所有符合条件的整数x的个数.条件为:L≤x≤R,x = a的p次方(a, p为整数且a>0, p>1). 分析: 一.当指数p=3时,底数a最多有1e6个,由于指数增加时底数收敛得很快,所以我们可以将p>=3时的所有x放进vector里排序去重(预处理),求x的个数的时候二分查找即可.二.对于p=…
题目链接 http://codeforces.com/problemset/problem/735/D 题意:一个人的收入为n他要交的税是n的最大除数,他为了少缴税将n分成k个数n1,n2,n2....nk(k可以为1)所交的税就n1~nk的所有最大约数的和 一道简单的数论题,首先当n为质数是不用分税为1最小,当n为合数是,n为偶数是根据哥德巴赫猜想任意大于2的偶数可以拆成两个质数的和所以最小为 2,n为奇数时由于奇数只能由偶数和奇数组成所以奇数如果拆掉一个2(最小的偶数)剩下的是质数那么n的税…
Codeforces 955C Sad powers 题意 q组询问,每次询问给定L,R,求[L,R]区间内有多少个数可以写成ap的形式,其中a>0,p>1,1 ≤ L ≤ R ≤ 1e18. 思路 对于p>2的情况,由于随着指数p的增大,小于1e18的p次幂的数量会急剧减小,总数量的级别在1e6多左右,因此可预处理.L,R不超过1e18,可以直接枚举数字1-1e6,将每个数字不超过1e18的且不是平方数的p次幂推入数组中,排序去重.以便回答询问时可二分求数量. 对于p=2的情况,对上界…
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉此题思维难度不太大,不过大概是细节多得到了精神污染的地步所以才放到 D1E 的罢((( 首先我们对所有 \(a_i,b_i\) 分解质因数并将它们全部质因子拎出来编个号 \(1,2,3,\cdots,m\)--这样的质因子个数肯定不会超过 \(2n\omega(a_i)\).我们记 \(ap_{i,j}\) 表示 \(a_i\) 中标号为 \(j\) 的质因子出现的次数,\(bp_{i,j}\) 表示 \(b_i\) 中标号为…
题意:给定n,求三个不同的数满足,2/n = 1/x + 1/y + 1/z. 析:首先1是没有解的,然后其他解都可以这样来表示 1/n, 1/(n+1), 1/(n*(n+1)),这三个解. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <…
E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the result can be very large, you shoul…
题意:给定N个数a1,a2,a3...aN,现在要求最小的n满足 n!/(a1!*a2!*...*aN!) 是一个正整数的最小的n. 分析:这题的想法很明确,就是分解a1!*a2!*...*aN!,把其分解成质因子相乘的形式,这个都很熟悉了,然后就是对每一个质因子二分搜索出一个数字下界,最后求其中最大的一个数,问题的关键就是如何分解这样一个表达式成一个质因子相乘的形式.使用一个cnt数组来表示每一个数的在乘积中出现的次数,然后从后往前假设一个数出现了k次,那么如果这个数是素数则不用更新,如果一个…
从题意,anw =  (b-1)*b^(n-1)%c,强调,为了b^(n-1). 弱渣只能推了宣传. phi(c)为小于c且与c互质的个数. 当x >= phi(c)时:A^x = A(x%phi(c) + phi(c)) . 当x < phi(c)时:直接求就可以. #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include &l…
题目链接 比较棒的一道题, 题意: 给你一个N个数的数组,让你用尽量少的操作使整个数组的gcd大于1,即gcd(a1 ,a2,,,,an) > 1 如果可以输出YES和最小的次数,否则输出NO 首先我们来看一下这个操作, 如果对   a b 老两个数进行操作 第一次为 a-b a+b 第二次为 -2b  2a 由此可见,任何两个数最多进行两次操作,可以让他们都能被2整除. 所以也就没有NO的情况. 那么我们只需要预处理一下gcd,如果>1了,直接输出0次. gcd=1的话,那么就需要我们去处理…
原文链接https://www.cnblogs.com/zhouzhendong/p/CF542D.html 题目传送门 - CF542D 题目传送门 - 51Nod1477 题意 定义公式 $J(x) = \sum_{1 \leq k \leq x 且 k|x 且 \gcd (k,x/k) = 1} k$ . 现在给定一个整数 $A$ ,要求有多少正整数 $x$ ,满足 $J(x)=A$ . $x|n$ 表示 $x$ 是 $n$ 的因子. $\gcd(a,b) 表示 $a$ 和 $b$ 的最大…
本题把$log$化简之后求得就是每个质数$f$前的系数,求系数并不难,难点在于求出所有的质数. 由于空间限制相当苛刻,$3e8$的$bitset$的内存超限,我们考虑所有的除了$2$和$3$以外的质数,他们可以被表示成$p \equiv \pm 1 (mod \; 6) $.(具体来讲就是把数表示成$6k, 6k+1, 6k+2, 6k+3, 6k+4, 6k+5$,显然只有余数为$1$或$5$才有成为质数的可能性).然后我们需要筛的个数就变成原来的三分之一了. 另一个做法:分块,一部分一部分筛…
You have been given n distinct integers a1, a2, ..., an. You can remove at most k of them. Find the minimum modular m (m > 0), so that for every pair of the remaining integers (ai, aj), the following unequality holds: . Input The first line contains…
题意: 思路:From https://blog.csdn.net/CSDNjiangshan/article/details/81536536 #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<iostream> #include<algorithm> #include<map> #include<set>…
B. New Skateboard time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new skateboard. He left a…
题目链接  Divisibility 题意 给定$n$和$k$,构造一个集合$\left\{1, 2, 3, ..., n \right\}$的子集,使得在这个集合中恰好有$k$对正整数$(x, y)$, $x < y$ 满足$x$是$y$的约数. 选定$1$和$2$, 首先把满足 $x > [\frac{n}{2}]\ $的质数$x$留出来, 然后把满足 $ [\frac{n}{3}]\  < x <=  [\frac{n}{2}]\ $的质数,以及他们的两倍留出来,   留出来…
A Trivial Problem Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer m and asks for the number of positive integers n, such that the factorial of n ends with exactly m zeroes. Are you among thos…
题意:定义F(a,0) = 0,F(a,b) = 1 + F(a,b - GCD(a,b).给定 x 和 y (<=1e12)求F(x,y). 题解:a=A*GCD(a,b) b=B*GCD(a,b),那么b-GCD(a,b) = (B-1)*GCD(a,b),如果此时A和B-1依然互质,那么GCD不变下一次还是要执行b-GCD(a,b).那么GCD什么时候才会变化呢?就是说找到一个最小的S,使得(B-S)%T=0其中T是a的任意一个因子.变形得到:B%T=S于是我们知道S=min(B%T).也…
题意 : 题目链接 分析 : Tutorial 讲的很清楚 至于为什么这样去考虑 算是一个经验问题吧 如果一个问题要你给出模意义下的答案 就多考虑一下答案是要用逆元构造出来 也就说明有除法的存在 那么可以去考虑等比数列或者等差数列求和公式等 #include<bits/stdc++.h> #define LL long long using namespace std; ; LL pow_mod(LL a, LL b) { LL ret = ; while(b){ ) ret = (ret *…
题意:n个数的gcd是k,要你删掉最少的数使得删完后的数组的gcd > k 思路:先求出k,然后每个数除以k.然后找出出现次数最多的质因数即可. 代码: #include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include<vector> #include<cstring> #include <iostream…
Codeforces Round #502 C. The Phone Number 题目描述:求一个\(n\)排列,满足\(LIS+LDS\)最小 solution 枚举\(LIS\),可证明\(LDS\)的最小值为\(\left \lceil \frac{n}{LIS} \right \rceil\). 证明: 假设\(LDS<\left \lceil \frac{n}{LIS} \right \rceil\),令\((a_i, b_i)\)为\(i\)为结尾的\(LIS\)和\(LDS\),…
赛后听 Forever97 讲的思路,强的一匹- - /* CodeForces 839D - Winter is here [ 数论,容斥 ] | Codeforces Round #428 (Div. 2) 题意: 给出数列a[N] 对每个子集,若 gcd(a[I1], a[I2], a[I3] ..., a[In]) > 1,则贡献为 n*gcd 求总贡献和 限制: N <= 2e5,a[i] <= 1e6 分析: 记录 num[i]数组为 i 的倍数的个数 则 gcd >=…