顾名思义, 条件概率指的是某个事件在给定其他条件时发生的概率, 这个非常符合人的认知:我们通常就是在已知一定的信息(条件)情况下, 去估计某个事件可能发生的概率. 概率论中,用 | 表示条件, 条件概率可以通过下式计算得到P(Y=y|X=x)=P(Y=y,X=x)P(X=x)P(Y=y|X=x)=P(Y=y,X=x)P(X=x), 即 在 x 发生的条件下 y 发生的概率 等于 x,y 同时发生的联合概率 除以 x自身的概率. 注意, 必须满足 P(x)>0P(x)>0, 否则对于永远不会发生…
title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Conditional Probability 条件概率 Multiplication Rule 乘法原理 Partitions Law of total Probability 全概率公式 toc: true date: 2018-01-31 10:34:36 Abstract: 本文介绍条件概率的定义及相关知识,…
1. 联合概率(joint distribution)的链式法则 基于链式法则的 explicit formula: p(x1:n)===p(x)p(x1)∏i=2np(xi|x1,-,xi−1)∏i=1np(xi|x1,-,xi−1) 等式左端表示联合概率分布,joint distribution,所谓联合概率表示的事件同时发生的概率,如 p(x3|x1,x2),的实际含义恰在于,事件 x1 和事件 x2 同时发生的情况下,事件 x3 发生的概率. 2. 从 chain rule 到 Mark…
Conditional Probability Example:In a batch, there are 80% C programmers, and 40% are Java and C programmers. What is the probability that a C programmer is also Java programmer? Let A --> Event that a student is Java programmer B --> Event that a st…
网络结构 首先我们抽象理解下一个网络结构是怎样的,如下图所示 F1,F2,F3为某种函数 input为输入数据,output为输出数据 X1,X2为为中间的层的输入输出数据 总体来说有以下关系 X1 = F(input) X2 = F1(X1) output = F2(X2) 在训练过程中output其实就是loss层的输出,训练的目的就是为了把loss值降到最低 链式法则 链式法则(英文chain rule)即是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别.视觉识别.目标检测以及许多其他领域(比如,药物发现以及基因组学)的技术发展.利用反向传播算法(backpropagation algorithm)来显示机器将会如何根据前一层的表征改变用以计算每层表征的内部参数,深度学习发现了大数据集的复杂结构.深层卷积网络(deep convolutional…
目录 Entropy Joint Entropy Conditional Entropy Chain rule Mutual Information Relative Entropy Chain Rules Chain Rule for Entropy Chain Rule for Mutual Information Conditional Mutual Information Chain Rule for Relative Entropy Jensen's Inequality Proper…
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计理论分析AI系统行为.概率论提出不确定声明,在不确定性存在情况下推理.信息论量化概率分布不确定性总量.Jaynes(2003).机器学习经常处理不确定量,有时处理随机(非确定性)量.20世纪80年代,研究人员对概率论量化不确定性提出信服论据.Pearl(1998). 不确定性来源.被建模系统内存的随…
2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influence 2 - 4 - Conditional Independence 2 - 5 - Independencies in Bayesian Networks 2 - 6 - Naive Bayes 2 - 7 - Application Medical Diagnosis 2 - 8 - Knowle…