ML- 核函数(Kernel) 的 SVM】的更多相关文章

对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据.在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果.在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射.在通常情况下,这种…
Why 核函数 目的是为了解决线性不可分问题. 核心思想是升维. 当样本点在低维空间不能很好地分开的时候, 可以考虑将样本通过某种映射(就是左乘一个矩阵) 到高维空间中, 然后在高维空间就容易求解一个平面 \(w^Tx +b\) 将其分开了. 想法是很美滋滋, 但立马就有一个问题,计算量大, 升到几百几千维, 内存怕是受不了. 这就立马联想到PCA 降维. 我在上大学的时候, 做客户细分,和用户画像(ps, 我是市场营销专业嘛), 通常是会用到降维技术, 然后提取主成分或做因子分析, 目的都是为…
将所有的样本都选做landmarks 一种方法是将所有的training data都做为landmarks,这样就会有m个landmarks(m个trainnign data),这样features就是某个x(可以是trainning data/cross validation data/test data里面的)与这些landmarks之间的距离的远近程度的描述. landmarks选定后得出新的features向量 给出一个x,则通过这些landmarks来计算features向量,和之前的…
百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高斯核(Gaussian Kernel): 还有其他一些偏门核函数:http://blog.csdn.net/wsj998689aa/article/details/47027365…
Radial Basis Functions (RBFs) are set of functions which have same value at a fixed distance from a given central point. Even Gaussian Kernels with a covariance matrix which is diagonal and with constant variance will be radial in nature. In SVMs, RB…
[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗解释. 0x01 问题 在学习核函数的时候,我一直有几个很好奇的问题. Why 为什么线性可分很重要? Why 为什么低维数据升级到高维数据之后,就可以把低维度数据线性可分? What 什么是核函数,其作用是什么? How 如何能够找到核函数? 不知道大家是否和我一样有这些疑问,在后文中, 我将通过…
(写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手机或iPad登陆网站就可以看到自己的一些笔记,才更有助于知识的巩固.借此机会,重新整理各大算法,希望自己能有更深的认识,如果有可能,也大言不惭的说希望能够帮助到需要帮助的朋友-) (本篇博客内容来自台大林轩田老师Coursera Machine Learning Technology视频及周志华老师…
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2.  Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的. 核函数描述和分析 考虑在” 回归和梯度下降 “一节的“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 之前介绍了SVM的原理和SVM的软间隔,它们已经可以很好的解决有异常点的线性问题,但是如果本身是非线性的问题,目前来看SVM还是无法很好的解决的.所以本文介绍SVM的核函数技术,能够顺利的解决非线性的问题. 2. 多项式回归 在线性回…
https://blog.csdn.net/leonis_v/article/details/50688766 特征空间的隐式映射:核函数    咱们首先给出核函数的来头:在上文中,我们已经了解到了SVM处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题. 此外,因为训练样例一般是不会独立出现的,它们总是以成对样例的内积形式出现,而用对偶形式表示学习器的优势在为在该表示中可调参数的个数不依赖输入…