P1072 Hankson 的趣味题[数论]】的更多相关文章

题目描述 Hanks 博士是 BT(Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c_1c1 和 c_2c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"和"求公倍数"之类问题的"逆问题",这个问题是这样的:已知正整数a_0,a_1,b_0,b_1a0…
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:…
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\(1<=n<=2,000,a0,a1,b0,a1<=2*1e9\) 用不是特别快的方法水过去的. 暴力枚举\(b1\)的约数,代入检验. 普通枚举约数复杂度\(O(\sqrt(L))\),检验的复杂度\(O(logL)\). 考虑到约数一个数\(k\)约数个数期望是\(log\)的. 所以先筛…
题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_0}{a_1})\) 额....上面这个式子似乎没用,看b的 \(lcm(x,b_0)=\frac{x*b_0}{gcd(x,b_0)}=b1\) 那么\(gcd(x,b_0)=\frac{x*b_0}{b_1}\) \(gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\)…
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; class Main{ public static void main(String args[]){ Scanner in = new Scanner(System.in); int n = in.nextInt(), a0, a1, b0, b1, count = 0; while(n-- > 0)…
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知…
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[b0,x]=b1(a0,x)=a1,[b0,x]=b1 于是,我们可以设: x=a1*p,b1=x*tx=a1∗p,b1=x∗t 于是有: a1*p*t=b1a1∗p∗t=b1 所以我们令: b1/a1=sb1/a1=s 则: p*t=sp∗t=s 即: t=s/pt=s/p 又由最大公约数与最小公…
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现 在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整 数 x 满足: 1. x 和 a0 的最大公约…
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现 在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整 数 x 满足: 1. x 和 a0 的最大公约…
这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50分. (为什么lyd大佬的暴力就是90...) 有个要点就是所求的x必定为d的约数. 然后根据lcm和gcd的性质,拆成质因数. x的每个质因数个数是有范围的,可以求出来. 然后乘起来就行了. 注意要分类讨论,别用书上写的,有毒. #include <cstdio> ; int p[N], top…
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) (由a*b=gcd(a,b)*lcm(a,b)) x=(b1/b0)*gcd(x,b0) 令i=gcd(x,b0)∈[1,√b0] 分成两半求减少时间复杂度 特判相等的时候 判断x=(b1/b0)*i和x=(b1/b0)*(b0/i)是否满足条件 代码 #include<iostream> #inc…
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(gcd(a,b)=k\),则存在\(gcd(a/k,b/k)=1\). 也就是说 \(x=k_1*a_1\),\(a_0=k_2*a_1\),它们最大公约数为\(a_1\),那么要求 \(k_1\) 与 \(k_2\) 必须互质,否则它们的最大公约数会是 \(gcd(k_1,k_2)*a_1\). 2…
https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}\) 由gcd的性质,对应指数的最小值,直接得一组方程. 再有lcm的性质,对应指数的最大值,再得一组方程. 设计起来不难但是写起来就慢多bug的. 第一次交70分,原因是质因数分解过慢! 应该一开始记录原本待分…
方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615 将b0和b1都分解质因数.记b0的某一质因数x的指数为a,b1中x的指数为b.如果a>b,那么显然对于这组b0和b1不可能有答案:如果a=b,那么ans中的x的指数可以为0到a的任意一个数:如果a<b,那么ans中x的指数只能为b. 举例: $$\begin{array}{l|l}b0=37 & b1=1776…
题目:https://www.luogu.org/problemnew/show/P1072 满足条件的数 x 一定是 a1 的倍数,b1 的因数,a0/a1 与 x/a1 互质,b1/b0 与 b1/x 互质: 按质因子来看,满足要求的数 x 的某个质因子 pi 的次数应该: 1.大于等于 a1 的,小于等于 b1 的: 2.如果 a0/a1 有 pi 剩余,则 x 的 pi 的次数只能是 a1 的 pi 的次数(无选择余地,不贡献答案): 3.如果 b1/b0 有 pi 剩余,则 x 的 p…
题面 提前知识:gcd(a/d,b/d)*d=gcd(a,b); lcm(a,b)=a*b/gcd(a,b); 那么可以比较轻松的算出:gcd(x/a1,a0/a1)==gcd(b1/b0,b1/x)==1; 那么我们求解的x仅仅从b1的因数中挑选就可以,x要符合以上条件且x%a1==0: 时间复杂度是O(sqrt(b1)*n+log(n)); #include <iostream> #include <cstring> #include <cmath> #define…
原题链接 嗯...通过标签我们易得知,这是一道数学题(废话) 其中,题目给了这两个条件: \(gcd(x,a_0)=a_1,lcm(x,b_0)=b_1\) 所以,根据 \(gcd\) 与 \(lcm\) 的性质,我们可以得到如下结论: \(a_1|x,x|b_1\) , \({x} \over a_1\) 与 \(a_0 \over a_1\) 互质, \(b_1 \over x\) 与 \(b_1 \over b_0\) 互质. (请自行思考原因) 有了这个结论,接下来的枚举就十分简单了.直…
#include<bits/stdc++.h> #define inf 1000000000 #define ll long long using namespace std; int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=ge…
这里提供两种做法 sol 1 考虑两个数\(A,B\)和\(C=gcd(A,B),D=lcm(A,B)\)的关系 设\(S=\{2,3,5...P_n\}\)为质数集合\(p_{x,i}\)表示\(x\)的第\(i\)种质因子数量 显然\(p_{C,i}=min(p_{A,i},p_{B,i}),p_{D,i}=max(p_{A,i},p_{B,i})\) 所以对于每种质因子,考虑在\(a_0,a_1,b_0,b_1\)的出现次数,这里分别记为\(o_1,o_2,o_3,o_4\) 以下几种情况…
题意 题目链接 Sol 充满套路的数学题.. 如果你学过莫比乌斯反演的话不难得到两个等式 \[gcd(\frac{x}{a_1}, \frac{a_0}{a_1}) = 1\] \[gcd(\frac{b_1}{b_0}, \frac{b_1}{x}) = 1\] 然后枚举\(b_1\)的约数就做完了.. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define LL long lon…
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #define inf 1000000000 #define N 50000 #define ll long long using namespace std; int read() { ,f=;char ch=getchar(); ;ch=getchar();} +c…
把 c 改成 d 下了两个点. 题目描述 已知正整数 a0,a1,b0,b1a_0,a_1,b_0,b_1a0​,a1​,b0​,b1​,设某未知正整数 xxx 满足: xxx 和 a0a_0a0​ 的最大公约数是 a1a_1a1​: xxx 和 b0b_0b0​ 的最小公倍数是 b1b_1b1​. 求满足条件的 xxx 的个数. Solution 1 考虑一个式子.∀a,b∈N∗\forall a,b\in\N^*∀a,b∈N∗ 有a×b=gcd⁡(a,b)×lcm(a,b)a\times b…
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:…
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"…
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 $c_1$ 和 $c_2$ 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考「求公约数」和…
算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现 在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整…
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知…
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现 在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个…
1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a…
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1和c2的最大公约数和最小公倍数.现在Hankson认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"和"求公倍数"之类问题的"逆问题",这个问题是这样的:已知正整数a0,…