Flink及Storm、Spark主流流框架比较】的更多相关文章

转自:http://www.sohu.com/a/142553677_804130 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了调研,今天与大家分享一下.Apache Flink(以下简称flink) 是一个旨在提供‘一站式’ 的分布式开源数据处理框架.是不是听起来很像spark?没错,两者都希望提供一个统一功能的计算平台给用户.虽然目标非常类似,但是flink在实现上和spark存在着很大的区别,flink是一个面向流…
干货 | Flink及主流流框架比较 IT刊 百家号17-05-2220:16 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了调研,今天与大家分享一下.Apache Flink(以下简称flink) 是一个旨在提供‘一站式’ 的分布式开源数据处理框架.是不是听起来很像spark?没错,两者都希望提供一个统一功能的计算平台给用户.虽然目标非常类似,但是flink在实现上和spark存在着很大的区别,flink是一个面向流的处…
1) MapReduce:是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行 处理,非常适合数据密集型计算. 2) Spark:MapReduce计算框架不适合迭代计算和交互式计算,MapReduce是一种磁盘 计算框架,而Spark则是一种内存计算框架,它将数据尽可能放到内存中以提高迭代 应用和交互式应用的计算效率. 3) Storm:MapReduce也不适合进行流式计算.实时分析,比如广告点击计算等,而 Storm则更擅长这种计算.它在实时性要远远好于MapReduce计…
Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 本课时我们主要介绍 Flink 的编程模型与其他框架比较. 本课时的内容主要介绍基于 Flink 的编程模型,包括 Flink 程序的基础处理语义和基本构成模块,并且和 Spark.Storm 进行比较,Flink 作为最新的分布式大数据处理引擎具有哪些独特的优势呢? Flink 的核心语义和架构模型 我们在讲解 F…
Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂. 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来.而在这个节骨眼上Storm横空出世了. Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点: 分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源. 运维简单:Storm的部署的确简单.虽然没有Mon…
Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂. 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来.而在这个节骨眼上Storm横空出世了. Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点: 分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源. 运维简单:Storm的部署的确简单.虽然没有Mon…
Scrum 1.3 多鱼点餐系统开发进度(系统主界面框架&美化) 1.团队名称:重案组 2.团队目标:长期经营,积累客户充分准备,伺机而行 3.团队口号:矢志不渝,追求完美 4.团队选题:餐厅到店点餐系统WEB 5.Sprint 1时间:11.14-11.23 重案组成员   姓名 学号 博客链接 Github链接 队长 黄冠锋 201406114134 http://www.cnblogs.com/hgf520/ https://github.com/crown999   卢利钦 201406…
一.说明 首先我不知道定义的文章标题是不是准确,我这篇博文介绍的是一个通用的软件主菜单框架,界面布局用的是extjs,还是先上一个图吧. 软件主界面左侧菜单采用的风格是extjs的手风琴模式,需要注意的是,界面上“修改密码”和“退出”功能没有实现. 2.系统应用步骤 (1).在数据表moduleList中修改菜单信息,moduleList数据表的结构.数据将在后面展示 (2).在菜单对应的界面上,添加UI设计,添加新功能的后台代码即可 在源代码中,在项目目录中的文件夹“ItemPanel”中查找…
Flink相对于Spark的优点 容错 Flink 基于两阶段提交实现了精确的一次处理语义. Spark Streaming 只能做到不丢数据,但是有重复. 反压 Flink 在数据传输过程中使用了分布式阻塞队列,一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力. Spark Streaming 为了实现反压这个功能,在原来的架构基础上构造了一个"速率控制器",这个"速率控制器"会根据几个属性,如任务的结束时间.处…
根据最新的统计显示,仅在过去的两年中,当今世界上90%的数据都是在新产生的,每天创建2.5万亿字节的数据,并且随着新设备,传感器和技术的出现,数据增长速度可能会进一步加快. 从技术上讲,这意味着我们的大数据处理将变得更加复杂且更具挑战性.而且,许多用例(例如,移动应用广告,欺诈检测,出租车预订,病人监护等)都需要在数据到达时进行实时数据处理,以便做出快速可行的决策.这就是为什么分布式流处理在大数据世界中变得非常流行的原因. 如今,有许多可用的开源流框架.有趣的是,几乎所有它们都是相当新的,仅在最…
参考这篇文章: https://www.sohu.com/a/196257023_470008 我们当时的目标就是要设计一款低延迟.exactly once.流和批统一的,能够支撑足够大体量的复杂计算的引擎. Spark streaming 的本质还是一款基于 microbatch 计算的引擎.这种引擎一个天生的缺点就是每个 microbatch 的调度开销比较大,当我们要求越低的延迟时,额外的开销就越大.这就导致了 spark streaming 实际上不是特别适合于做秒级甚至亚秒级的计算.…
Apache Flink是什么 Flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理.这个目标看起来和Spark和类似.没错,Flink也在尝试解决 Spark在解决的问题.这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用.所以,Flink和Spark的目 标差别并不大,他们最主要的区别在于实现的细节,后面我会重点从不同的角度对比这两者. Apache Spark vs Apache Flink 1.抽象 Abstraction Spark中,对…
1. 简介 是一个分布式, 高容错的 实时计算框架 Storm进程常驻内存, 永久运行 Storm数据不经过磁盘, 在内存中流转, 通过网络直接发送给下游 流式处理(streaming) 与 批处理(batch) 批处理(batch): MapReduce 微批处理(MircroBatch): Spark (性能上近似 Streaming, 但是还是有所不及) 流(streaming): Storm, Flink(其实Flink也可以做批处理) Storm MapReduce 流式处理 批处理…
当前有许多分布式计算系统能够实时处理大数据,这篇文章是对Apache的三个框架进行比较,试图提供一个快速的高屋建瓴地异同性总结. Apache Storm 在Storm中,你设计的实时计算图称为toplogy,将其以集群方式运行,其主节点会在工作节点之间分发代码并执行,在一个topology中,数据是在spout之间传递,它发射数据流作为不可变的key-value匹配集合,这种key-value配对值称为tuple,bolt是用来转换这些流如count计数或filter过滤等,bolt它们自己也…
 Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streaming的基本开发方法.以Spark 自带的example进行测试和介绍,其为"StructuredNetworkWordcount.scala"文件. 1. Quick Example 由于我们是在单机上进行测试,所以需要修单机运行模型,修改后的程序如下: package org.apache…
原文地址:http://www.javacodegeeks.com/2015/02/streaming-big-data-storm-spark-samza.html There are a number of distributed computation systems that can process Big Data in real time or near-real time. This article will start with a short description of th…
备注:代码已传至https://github.com/yanzi1225627/FragmentProject_QQ 欢迎fork,如今来审视这份代码,非常多地方写的不太好,欢迎大家指正.有时间我会继续完好.2015-11-1. 近期重复研究日常经典必用的几个android app,从主界面带来的交互方式入手进行分析,我将其大致分为三类.今天记录第一种方式.即主界面以下有几个tab页.最上端是标题栏.tab页和tab页之间不是通过滑动切换的,而是通过点击切换tab页. 早期这样的架构一直是使用t…
Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单.本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式. 1. File Structured Streaming支持将数据以File形式保存起来,其中支持的文件格式有四种:json.text.csv和parquet.其使用方式也非常简单只需设置checkpointLo…
 Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streaming的基本开发方法.以Spark 自带的example进行测试和介绍,其为"StructuredNetworkWordcount.scala"文件. 1. Quick Example 由于我们是在单机上进行测试,所以需要修单机运行模型,修改后的程序如下: package org.apache…
导读 引言 环境准备 安装步骤 1.下载地址 2.开始下载 3.解压spark 4.配置环境变量 5.配置 spark-env.sh 6.启动spark服务 7.测试spark stay hungry stay foolish. 引言 2012年,UC Berkelye 的ANPLab研发并开源了新的大数据处理框架Spark.其核心思想包括两方面:一方面对大数据处理框架的输入/输出.中间数据进行建模,将这些数据抽象为统一的数据结构,命名为弹性分布式数据集(Resilent Distributed…
Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick example所示的程序,就是使用的这种方式.用户只需要指定"socket"形式并配置监听的IP和Port即可. val scoketDF = spark.readStream .format("socket") .option("host","…
一.客户端进行操作 1.根据yarnConf来初始化yarnClient,并启动yarnClient2.创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException:3.设置资源.环境变量:其中包括了设置Application的Staging目录.准备本地资源(jar文件.log4j.properties).设置Applicati…
另外一种主界面风格则是以网易新闻.凤凰新闻以及新推出的新浪博客(阅读版)为代表.使用ViewPager+Fragment,即ViewPager里适配器里放的不是一般的View.而是Fragment.所以适配器不能继承PagerAdapter,而要继承FragmentPagerAdapter,这是在android.support.v4.app.FragmentPagerAdapter包里的.有点奇葩的是,FragmentPagerAdapter仅仅在这个包里有,在android.app.*这个包以…
Structured Streaming提供一些API来管理Streaming对象.用户可以通过这些API来手动管理已经启动的Streaming,保证在系统中的Streaming有序执行. 1. StreamingQuery 在调用DataStreamWriter方法的start启动Streaming后,会返回一个StreamingQuery对象.所以用户就可以通过这个对象来管理Streaming. 如下所示: val query = df.writeStream.format("console…
1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移动的时间长度: 触发时间:是指Structured Streaming将数据写入外部DataStreamWriter的时间间隔. 图 11 1.2 API 用户管理Structured Streaming的窗口功能,可以分为两步完成: 1) 定义窗口和滑动步长 API是通过一个全局的window方法…
Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick example所示的程序,就是使用的这种方式.用户只需要指定"socket"形式并配置监听的IP和Port即可. val scoketDF = spark.readStream .format("socket") .option("host","…
1.RpcEndpoint: RPC端点 Spark针对每个节点(Client.Master.Worker)都称之为一个RpcEndpoint,且都实现RpcEndpoint接口,内部根据不同端点的需求,设计不同的消息和不同的业务处理,如果需要发送(询问)则内部调用Dispatcher的对应方法 说明: RpcEndpoint 用来接收消息 RpcEndpointRef 用来发送消息 RpcEndpointRef的具体实现类是: NettyRpcEndpointRef 2.RpcEnv:Rpc上…
单机zookeeper http://coolxing.iteye.com/blog/1871009 storm http://os.51cto.com/art/201309/411003_2.htm 记得时刻查看是否开机防火墙导致某些问题 yarn 安装 Hadoop Yarn(一)—— 单机伪分布式环境安装 - Hama White 的博客 - 博客频道 - CSDN.NET Hadoop(2.5.1)伪分布式环境CentOS(6.5 64位)配置 - Junelf's BLOG - 博客频…
本文主要记录一些关于Flink与storm,spark的区别, 优势, 劣势, 以及为什么这么多公司都转向Flink. What Is Flink 一个通俗易懂的概念: Apache Flink 是近年来越来越流行的一款开源大数据计算引擎,它同时支持了批处理和流处理.这是对Flink最简单的认识, 也最容易引起疑惑, 它和storm和spark的区别在哪里? storm是基于流计算的, 但是也可以模拟批处理, spark streaming也可以进行微批处理, 虽说在性能延迟上处于亚秒级别, 但…
简介 Flink是一个低延迟.高吞吐.统一的大数据计算引擎, Flink的计算平台可以实现毫秒级的延迟情况下,每秒钟处理上亿次的消息或者事件. 同时Flink提供了一个Exactly-once的一致性语义, 保证了数据的正确性.(对比其他: At most once, At least once) 这样就使得Flink大数据引擎可以提供金融级的数据处理能力(安全). Flink作为主攻流计算的大数据引擎,它区别于Storm,Spark Streaming以及其他流式计算引擎的是: 它不仅是一个高…