经典的石子合并问题!!! 设f[i][j]为从i到j的最大值 然后我们先枚举区间大小,然后枚举起点终点来更新 f[i][j] = min(f[i][k] + f[k+1][j] + sum(i, j)); 最后f[1][n]就是答案!! #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using na…
相信,在 JavaScript .C# 中都见过不少链式方法调用,那么,其中实现该类链式调用原理,大家有没有仔细思考过?其中 JavaScript 类库:jQuery 中就存在大量例子,而在 C# 中,其中 lambda 表达式的大量使用以及扩展方法的新增,使链式调用也见的不少. 首先,就谈谈 JavaScript 中链式调用,其实,也是就是运用之前提及的 this . var Person=function(name,age){ this.Name=name; this.Age=age; };…
jquery中链式操作是如何实现? 例如:$(obj).children().css('color','red').next().css('color','red').siblings().css('color','red').find("ul").parent().next().css('color','red'); 在这个链式操作中,第一个css()结束的时候将this指向$(obj).children():第二个将this指向$(obj).children().next():第三…
我又总结了一种动归模型-- 这道题和上一道题很类似,都是给一个序列,然后相邻的元素可以合并 然后合并后的元素可以再次合并 那么就可以用这两道题类似的方法解决 简单来说就是枚举区间,然后枚举断点 加上断点左右两边的值(按照题目,可能不是加),然后在按题目加上计算合并后总的序列的值 就这一道题而言f[i][j] = max(f[i][k] + f[k+1][j] + a[i] * a[(k+1)%n] * a[(j+1)%n]); 题目中变化的可能就是 合并后总的序列的值的计算方式 万变不离其宗 #…
一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong ) #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; typedef long long ll; const int MAXN = 20; ll f[MAXN][MAXN][MAXN]; i…
这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 2123; int dp[MAXN][MAXN], t[MAXN]; int f[MAXN], d[MAXN], h, n…
我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j - 1), j > i 也就是说枚举从哪个楼层过来.取最优 wait(j)表示从第j个楼层等待电梯的最短时间. 这个算法应该是正确的,但是时间复杂度很大 有n个电梯,h层的话 枚举i和j要h * h,然后算wait要枚举电梯要n 所以是h * h * n,而题目给的n最大200,h最大10000,肯…
假设有这样的一个场景: 我们知道一个用户某次航班,抽象成一个departure,大致是: {userID : user.email,flightID : "UA_343223",date: "01/14/2014 8:00 AM"} 有关航班的,抽象成一个flight,大致是: {id: flightID,pilot : "Captain Morgan", plane : {make  : "Boeing 747 RC",mo…
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; typedef long long ll; const int…
我一开始想的是前i个区间的最大值 显然对于当前的区间,有不选和选两种情况 如果不选的话,就继承f[i-1] 如果选的话,找离当前区间最近的区间取最优 f[i] = max(f[i-1, f[j] + a[i].v()) j为i前面区间中能取得离i最近的区间 那么显然这里涉及到f[i]的时候取的最后一个区间是什么,才能比较 那么就要额外开一个last数组来记录 最后输出f[n] 这样写很麻烦,但是我还是强行写出然后还AC了 #include<cstdio> #include<algorit…