原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 H…
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了.1        算法要点Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联:Haar分类器算法的要点如下:a)        使用Haar-like特征做检测.b)       使用积分图(Inte…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年.人们只需要@一下Tay,Tay就会追踪该用户的网名.性别.喜欢的食物.邮编.感情状况等个人信息.除了聊天,Tay还可以说笑话,…
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.而对于dlib人脸检测方法采用64个特征点检测,效果会好于opencv的方法识别率会更高,本文会分别采用这几种方法来实现人脸识别.那个算法更好,跑跑代码就知道. 实时图像捕获 首先在进行人脸识别之前需要先来学点O…
上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开). 这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了.不过效果并不是特别理想,由于我是在自己的笔记本上进行训练,为减少训练时间我的样本量不是很大,最后也只是勉强看看效果了.网上有关的资料和博客可以说很多了,只要耐心点总是能成功的. 采集样本: 首先要训练,就得有训练集.网上有很多国外高校开源的库可供下载: 1.卡耐基梅隆大学图像数据库(点我打开) 2.MIT人脸数据库(点我打开) 3.ORL…
AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器.根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38].AdaBoost分类器的构造过程如图2-4所示. 图2-4  Adaboost分类器的构造过程 1)Haar-like矩形特征 Haar-like矩形特征是根据图像的区域灰度对比特性进行设计的,常用的Haar-like特征[39]如图2-5所示,Haar-like特征值定义为白色区域像素值之和与黑色区域像素值之和的差值. 图2-5…
原地址:http://blog.csdn.net/celerychen2009/article/details/8839097 人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差很大. 对于人脸检测而言,目前最有效的方法仍然是基于Adaboost的方法.在网上可以找到很多关于Adaboost方法的资料,但基本上是千篇一律,没有任何新意.给初学者带了很多不便.建议初学者只需要认真阅读:北京大学 赵楠 的本科毕业论文 :基于 AdaBoost算法的人脸检测 这篇毕业论文就够了.…
原地址:http://blog.csdn.net/van_ruin/article/details/9166591 .方向梯度直方图(Histogramof Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.基本知识可以参考博客:http://blog.csdn.net/zouxy09/article/details/7929348 .Adaboost的基础知识可以参考书籍:统计学…
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主要有两大类:基于知识和基于统计. 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.主要包括模板匹配.人脸特征.形状与边缘.纹理特性.颜色特征等方法. 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计…