题目大意: 求最小生成树的数量 曾今的我感觉这题十分的不可做 然而今天看了看,好像是个类模板的题.... 我们十分容易知道,记能出现在最小生成树中的边的集合为\(S\) 那么,只要是\(S\)中的边构成的树,一定能构成最小生成树 我们只要预处理哪些可能在最小生成树中即可 打个树剖维护以下就可以了 太懒了,不想打太长,然后就拿并查集随便弄了弄 最后来个矩阵树就行了 \(31011\)不是一个质数,用辗转相除法来消元 复杂度\(O(n^3 \log n)\) #include <cstdio> #…
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很丑 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define int…
In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c…
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的计数及其应用 矩阵数定理: 截图来自于上述论文 裸题. #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; ; ; double…
蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过. 最小生成树的两个性质: 不同的最小生成树,相同权值使用的边数一定相同. 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致. 这样我们随便跑一个\(MST\),就可以知道所有\(MST\)边的构造情况.由于性质二,我们可以考虑枚举每一种权值的所有边,保留所有非此权值的树边,看可以连出来多少种不同的最小生成树.也就是按照权值构造最小生成树,这个过程满足乘法原理. #include <bits/stdc++.h> using na…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a…
[题解] 对于不同的最小生成树,每种权值的边使用的数量是一定的,每种权值的边的作用是确定的 我们可以先做一遍Kruskal,求出每种权值的边的使用数量num 再对于每种权值的边,2^num搜索出合法使用方案,把每种权值的边的方案用乘法原理乘起来就是答案了 #include<cstdio> #include<algorithm> using namespace std; ,Mod=; ,cnt,st[maxn],fa[maxn],num[maxn]; struct edge{int…
更正了我之前打错的地方,有边的话G[i][j]=-1; WA了好多次,中间要转成long double才行..这个晚点更新. #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; typedef long double ld; ; ; int map[N][N]; ld G[N][N]; ld myabs(ld x){ ? x:…
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能,从而带来了多种选择: 对于每一层次(边权相同)的边来说,它们最终会把图进一步连通: 所以在这一层之前缩好点,看看这一层连接出几个新连通块,对于每个连通块内部做矩阵树定理求生成树个数,再乘法原理乘起来即可: 注意高斯消元的矩阵不能直接用原图的点标号等,求行列式会出错: 疑惑:以及高斯消元 return…