5-kunernetes资源调度】的更多相关文章

在hadoop生态越来越完善的背景下,集群多用户租用的场景变得越来越普遍,多用户任务下的资源调度就显得十分关键了.比如,一个公司拥有一个几十个节点的hadoop集群,a项目组要进行一个计算任务,b项目组要计算一个任务,集群到底先执行哪个任务?如果你需要提交1000个任务呢?这些任务又是如何执行的? 为了解决上面的问题,就需要在hadoop集群中引入资源管理和任务调度的框架.这就是--Yarn. YARN的发展 Yarn在第一代的时候,框架跟hdfs差不多.一个主节点jobtracker,用来分配…
随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构当网站流量很小时,只需一个应用,将所有功能都部署在一起,以减少部署节点和成本.此时,用于简化增删改查工作量的 数据访问框架(ORM) 是关键. 垂直应用架构当访问量逐渐增大,单一应用增加机器带来的加速度越来越小,将应用拆成互不相干的几个应用,以提升效率.此时,用于加速前端页面开发的 Web框架(MVC) 是关键. 分布式服务架构当垂…
YARN资源调度器 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述 集群资源是非常有限的,在多用户.多任务环境下,需要有一个协调者,来保证在有限资源或业务约束下有序调度任务,YARN资源调度器就是这个协调者. YARN调度器有多种实现,自带的调度器为Capacity Scheduler和Fair Scheduler.YARN资源调度器均实现Resource Scheduler接口,是一个插拔式组件,用户可以通过配置参数来使用不同的调度器,也可以自己按照接口规范…
1.Hadoop YARN产生背景 源于MapReduce1.0 运维成本 如果采用“一个框架一个集群”的模式,则可能需要多个管理员管理这些集群,进而增加运维成本,而共享模式通常需要少数管理员即可完成多个框架的统一管理. 数据共享 随着数据量的暴增,跨集群间的数据移动不仅需花费更长的时间,且硬件成本也会大大增加,而共享集群模式可让多种框架共享数据和硬件资源,将大大减小数据移动带来的成本. 直接源于MRv1在几个方面的缺陷: 扩展性受限 单点故障 难以支持MR之外的计算 多计算框架各自为战,…
资源调度 说明: Application的调度算法有两种,分别为spreadOutApps和非spreadOutApps spreadOutApps 在spark-submit脚本中,可以指定要多少个executor,executor需要多少个cpu及多少内存,基于该机制,最后executor的实际数量,以及每个executor的cpu可能与配置是不一样的. 因为spreadOutApps调度算法的总是基于总CPU总和来分配,比如要求3个executor每个要3个CPU,如果有9个worker每…
一.引子 在Worker Actor中,每次LaunchExecutor会创建一个CoarseGrainedExecutorBackend进程,Executor和CoarseGrainedExecutorBackend是1对1的关系.也就是说集群里启动多少Executor实例就有多少CoarseGrainedExecutorBackend进程. 那么到底是如何分配Executor的呢?怎么控制调节Executor的个数呢? 二.Driver和Executor资源调度 下面主要介绍一下Spark…
本文转自:http://www.itweet.cn/2015/07/24/yarn-resources-manager-allocation/ Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),本文将介绍YARN是如何对这些资源进行调度和隔离的. 在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责…
一.简介 于Worker Actor于,每次LaunchExecutor这将创建一个CoarseGrainedExecutorBackend流程.Executor和CoarseGrainedExecutorBackend是1对1的关系.也就是说集群里启动多少Executor实例就有多少CoarseGrainedExecutorBackend进程. 那么究竟是怎样分配Executor的呢?怎么控制调节Executor的个数呢? 二.Driver和Executor资源调度 以下主要介绍一下Spark…
转载请标明出处http://www.cnblogs.com/haozhengfei/p/0593214ae0a5395d1411395169eaabfa.html Spark Core_资源调度与任务调度详述 资源调度与任务调度(standalone client 流程描述)     集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资源写入到Master的HashSet数据机构中)     一个 Worker 默认给一个 Application 启动 1 个 Exec…
本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.TaskScheduler.SchedulerBackend 等进行的作业调度 资源调度是指应用程序如何获得资源 任务调度是在资源调度的基础上进行的,没有资源调度那么任务调度就成为了无源之水无本之木 Master 资源调度的源码鉴赏 因為 Master 負責資源管理和調度,所以資源調度方法 schedu…