题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入格式 11行,若干个整数(个数\le 100…
当前所在位的最长上升子序列只和前面一个字符有关 #include <iostream> #include <algorithm> using namespace std; ]; int len; int main() { ; ] = {,,,,,,,,}; s[] = ; len = ; } int pa(int *arr,int n) { ;i<=n; ++i) { if(arr[i] > s[len]) s[++len] = arr[i]; else { int p…
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blo…
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> #define max(x, y) (x) > (y) ? (x) : (y) const int maxn = 1e6 + 5; const int inf = 1 << 30; int dp[maxn]; int main(){ int n, T; scanf("%d"…
做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { if(dp[i-1]>=0) dp[i]=dp[i-1]+a[i]; else dp[i]=a[i]; } 例题 裸的最长字段和 可以用滚动数组,下面是用滚动数组写的 #include <iostream> #include <algorithm> #include <s…
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素.注意d中元素是单调递增的,下面要用到这个性质.首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需…
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submissions/ //GO //经典DP 线性DP //dp[i] 那么 nums[i] 必然要大于 nums[j],才能将 nums[i] 放在nums[j] 后面以形成更长的上升子序列. func lengthOfLIS(nums []int) int { if len(nums) <= 1{ return…
LIS问题 什么是LIS? 百度百科 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列. 怎么求LIS? O(n^2)做法 具体做法是用两个for,状态转移方程为f[i]=max(f[i],f[j]+1)其中f数组为这个位置的LIS长度,然后用max找一下最长LIS即可 代码 for(int i=1;i<=n;i++) for(int j=1;j<i;j++) if(a[j]<a[i]) f[i]=…
  题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=1000001<=n<=1000001<=n<=100000 和On^2算法不同,dp数组存储的不再是子序列长度了,而是一个最小的递增子序列.用len这个变量存储最小子序列的长度(或者说末尾位置),当a[i]>dp[len]时直接把a[i]添加到子序列的末尾,当a[i]<=dp…
顾名思义,线性DP就是在一条线上进行DP,这里举一些典型的例子. LIS问题(最长上升子序列问题) 题目 给定一个长度为N的序列A,求最长的数值单调递增的子序列的长度. 上升子序列B可表示为B={Ak1,Ak2,···,Akp},其中k1<k2<···<kp. 解析 状态:F[i]表示以A[i]为结尾的最长上升子序列的长度,边界为f[0]=0. 状态转移方程:F[i]=max{F[j]+1}(0≤j<i,A[j]<A[i]). 答案显然为max{F[i]}(1≤i≤N). 事…