首先让我们回顾下上节课讲的,用牛顿法计算√2的内容: 简单来说,牛顿法从x0=1不断向后计算逼近√2的值,而刚开始计算的精度是1,随着牛顿法的逼近(共log2d个循环),就能使得√2逼近值的精度达到d.在逼近过程中,精度的变化为Quadratic convergence二次收敛趋势(即1,2,4,6,....),为了证明这个,讲师给出了下图内容: 假设xn = √a (1+εn) 且εn随着n增加,不断趋于0,本质上来说就是xn = √a,加了(1+εn)是为了方便我们证明二次收敛的存在.之后根…
Loops are often used in programs that compute numerical results by starting with an approximate answer and iteratively improving it. For example, one way of computing square roots is Newton’s method. Suppose that you want to know the square root of a…
Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's Method)在最优解的搜索方面有了较大改进,它不仅利用了目标函数的一阶导数,还利用了搜索点处的二阶导数,使得搜索算法能更准确地指向最优解. 我们结合下图所示的一个实例来描述牛顿法的思想.假设我们想要求得参数\theta,使得f(\theta)=0.算法的描述如下: 随…
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. 对于形如f(x)=0的方程,首先任意估算一个解x0,再把该估计值代入原方程中.由于一般不会正好选择到正确的解,所以有f(x)=a.这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1. f(x)=0中精确解的意义是,当取得解的时候,函数值为零(即f(x)的…
在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方法(Newton's method) 逻辑回归中利用Sigmoid函数g(z)和梯度上升来最大化ℓ(θ).现在我们讨论另一个最大化ℓ(θ)的算法----牛顿方法. 牛顿方法是使用迭代的方法寻找使f(θ)=0的θ值,在这里θ是一个真实的值,不是一个参数,只不过θ的真正取值不确定.牛顿方法数学表达式为: 牛顿方法…
在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's Method)在最优解的搜索方面有了较大改进,它不仅利用了目标函数的一阶导数,还利用了搜索点处的二阶导数,使得搜索算法能更准确地指向最优解. 我们结合下图所示的一个实例来描述牛顿法的思想.假设我们想要求得参数\(\theta\),使得\(f(\theta)=0\).算法的描述如下: 随机猜测一个解\(…
UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: r2≡x (mod n)=>r2+k1n=x 已知一个r!,带入两式相减得 r2−r12=kn => (r+r1)(r−r1)=kn 枚举A,B,使得 A * B = n (r + r1)为A倍数 (r - r1)为B倍数 这样就能够推出 Aka−r1=Bkb+r1=r => Aka=Bk…
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jacobian矩阵矩阵 对于一个向量函数F:$R_{n}$ -> $R{m}$是一个从欧式n维到欧式m维空间的函数(好像有点难理解,请看下面),这个函数由m个实函数组成,每一个函数的输入自变量是n维的向量,即$(y_{1}(x_{1},\cdots,x_{n}), \cdots,y_{m}(x_{1},…
之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少,收敛速度更快. 红色曲线是利用牛顿法迭代求解,绿色曲线是利用梯度下降法求解. 牛顿法:wiki 牛顿法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法.方法使用函数的泰勒级数的前面几项来寻找方程的根…
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程.对于形如f(x)=0的方程,首先任意估算一个解x0,再把该估计值代入原方程中.由于一般不会正好选择到正确的解,所以有f(x)=a.这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1.f(x)=0中精确解的意义是,当取得解的时候,函数值为零(即f(x)的精确解是函数的零点).因此,x1比x0更加接…