spark sql 以JDBC为数据源】的更多相关文章

一.环境准备: 安装mysql后,进入mysql命令行,创建测试表.数据: 将 mysql-connector-java 的jar文件拷贝到 \spark_home\lib\下,你可以使用最新版本,下载地址: http://dev.mysql.com/downloads/connector/j/ 二.实现代码 1.准备工作:         SparkConf conf = new SparkConf().setAppName("JDBCDataSource");//.setMaste…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
1,JSON数据集 Spark SQL可以自动推断JSON数据集的模式,并将其作为一个Dataset[Row].这个转换可以SparkSession.read.json()在一个Dataset[String]或者一个JSON文件上完成. 请注意,作为json文件提供的文件不是典型的JSON文件.每行必须包含一个单独的,独立的有效JSON对象.有关更多信息,请参阅 JSON行文本格式,也称为换行符分隔的JSON. 对于常规的多行JSON文件,请将该multiLine选项设置为true.例如下面的例…
Spark SQL 的数据源------通用的数据 加载/保存功能 Spark SQL支持通过DataFrame接口在各种数据源上进行操作.DataFrame可以使用关系变换进行操作,也可以用来创建临时视图.将DataFrame      注册为临时视图允许您对其数据运行SQL查询.本节介绍使用Spark Data Sources加载和保存数据的一般方法,然后介绍可用于内置数据源的特定选        项. 1, 常用的加载和保存功能. 最简单的形式,默认的数据源(parquet除非另有配置 s…
目前没有实现,理一下思路,有3中途径: 1:spark core可以使用sequoiadb最为数据源,那么是否spark sql可以直接操作sequoiadb. 2: spark sql支持Hive, sequoiadb可以和hive做对接,那么是否可以通过HIveContext 来实现. 3:spark 1.2以后支持了external datasource ,需要实现相关的接口来对接第三方数据源.…
一.IDEA装驱动: 1.下载一个MySQL的JDBC驱动:mysql-connector-java-5.1.44.tar.gz2.在idea Open Moudle Settings 在 Moudle中   选Dependencies + JDC驱动的解压位置 选(mysql-connector-java-5.1.44-bin)这个就ok 二.程序: import java.util.Properties import com.sun.org.apache.xalan.internal.xsl…
spark SQL Parquet 文件的读取与加载 是由许多其他数据处理系统支持的柱状格式.Spark SQL支持阅读和编写自动保留原始数据模式的Parquet文件.在编写Parquet文件时,出于兼容性原因,所有列都会自动转换为空. 1, 以编程方式加载数据 这里使用上一节的例子中的数据:常规数据加载   private def runBasicParquetExample(spark: SparkSession): Unit = {      import spark.implicits.…
load.save方法的用法          DataFrame usersDF = sqlContext.read().load("hdfs://spark1:9000/users.parquet");                  usersDF.select("name", "favorite_color").write()                 .save("hdfs://spark1:9000/namesAnd…
4.1 通用加载/保存方法 4.1.1手动指定选项 Spark SQL的DataFrame接口支持多种数据源的操作.一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表.把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询 Spark SQL的默认数据源为Parquet格式.数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作.修改配置项spark.sql.sources.default,可修改默认数据源格式 val df = s…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…