MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果按照字母顺序进行排序 Map过程 Reduce过程 WordCount的源代码 import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import…
MapReduce的应用案例(利用MapReduce进行排序) MapReduce的应用案例(利用MapReduce进行排序) 思路: Reduce之后直接进行结果合并 具体样例: 程序名:Sort.java import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import o…
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask JobTracker TaskTracker Hadoop MapReduce体系结构 JobTracker的角色 作业调度 分配任务.监控任务执行进度 监控TaskTracker的状态 TaskTracker的角色 执行任务 汇报任务状态 MapReduce作业执行过程 MapReduce的容错机制 重复…
MapReduce原理 MapReduce原理 简单来说就是,一个大任务分成多个小的子任务(map),并行执行后,合并结果(reduce). 例子: 100GB的网站访问日志文件,找出访问次数最多的IP地址…
计算文件中出现每个单词的频数 输入结果按照字母顺序进行排序 编写WordCount.java 包含Mapper类和Reducer类 编译WordCount.java javac -classpath 打包jar -cvf WordCount.jar classes/* 提交作业 hadoop jar WordCount.jar WordCount input output…
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6814778610788860424/ 编写类似MapReduce的案例-单词统计WordCount 要统计的文件为Spark的README.md文件 分析逻辑: 1. 读取文件,单词之间用空格分割 2. 将文件里单词分成一个一个单词 3. 一个单词,计数为1,采用二元组计数word ->(word,1) 4. 聚合统计每个单词出现的次数 RDD的操作 1.读取文件: sc.textFile("file:/…
数据准备 数据下载:<莎士比亚全集> 我们先来看看原始数据:首先将数据加载到RDD,然后显示数据框的前15行. shakespeareDF = sqlContext.read.text(fileName) shakespeareDF.show(15, truncate=False) 输出如下: +-------------------------------------------------------+ |value | +---------------------------------…
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop…
Hadoop入门例程简介 一个.有些指令 (1)Hadoop新与旧API差异 新API倾向于使用虚拟课堂(象类),而不是接口.由于这更easy扩展. 比如,能够无需改动类的实现而在虚类中加入一个方法(即用默认的实现). 在新的API中.mapper和reducer如今都是虚类. 新的API 放在org.apache.hadoop.mapreduce 包(和子包)中.之前版本号的API 依然放在org.apache.hadoop.mapred中. 新的API充分使用上下文对象(Context),使…
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从代码分析来说明在map端是如何将map的输出保存下来等待reduce来取. 在执行每个map task时,无论map方法中执行什么逻辑,最终都是要把输出写到磁盘上.如果没有reduce阶段,则直接输出到hdfs上,如果有有reduce作业,则每个map方法的输出在写磁盘前线在内存中缓存.每个map…