我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,WourdCount自带WourdCount程序指令,就可以输出写入的那句话各个不同单词的个数.但是这不是这篇博客主要讲的内容,主要是想通过一个简单的Wordcount程序,来认识Hadoop的内部机制.并通过此来深入了解MapReduce的详细过程.在Thinking in BigDate(八)大数据H…
转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,WourdCount自带WourdCount程序指令,就可以输出写入的那句话各个不同单词的个数.但是这不是这篇博客主要讲的内容,主要是想通过一个简单的Wordcount程序,来认识Hado…
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoch数进行学习率衰减. 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 在上述例子中,每30个epochs衰减十倍学习率. 计算公式…
caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需要一个比较长的过程,这个过程中你需要对caffe中很多东西,细节进行深入的理解,这样才可以知道为什么能有这样的结果,在训练或者fine-tuning时知道针对调整的方法.下面针对caffe中的使用进行讲解. 在使用过程中,caffe官网上提供了详细的使用说明,如果感觉仍然存在一些困难,可以使用谷歌或百度搜索自…
示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文目录 目录 一. 上手TensorFlow.js 二. 使用TensorFlow.js构建卷积神经网络 卷积神经网络 搭建LeNet-5模型 三. 基于迁移学习的语音指令识别 推荐课程 TensorFlow是Google推出的开源机器学习框架,并针对浏览器.移动端.IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScri…
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并行训练 1.1 分布式并行训练的必要 1.2 分布式训练 1.3 训练并行机制 1.3.1 三种机制 1.3.2 如何使用 1.4 数据并行训练 0x02 通信 & 架构 2.1 方法和架构 2.2 异步 vs 同步 0x03 具体架构 3.1 MapReduce 3.2 参数服务器 (PS) 3.…
[源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 0x00 摘要 0x01 背景概念 1.1 深度学习框架 1.2 Tensorflow Optimizer 0x02 总体架构 2.1 总体思路 3.2 总体调用关系 0x04 TensorFlow 1.x 4.1 _DistributedOptimizer 4.2 c…
去年11月,一篇名为<Playing Atari with Deep Reinforcement Learning>的文章被初创人工智能公司DeepMind的员工上传到了arXiv网站.两个月之后,谷歌花了500万欧元买下了DeepMind公司,而人们对这个公司的了解仅限于这篇文章.近日,Tartu大学计算机科学系计算神经学小组的学者在robohub网站发表文章,阐述了他们对DeepMind人工智能算法的复现. 在arXiv发表的原始论文中,描述了一个单个的网络,它能够自我学习从而自动的玩一些…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
https://mp.weixin.qq.com/s/NIza8E5clC18eMF_4GMwDw 深度学习的“深度”层面源于输入层和输出层之间实现的隐含层数目,隐含层利用数学方法处理(筛选/卷积)各层之间的数据,从而得出最终结果.在视觉系统中,深度(vs.宽度)网络倾向于利用已识别的特征,通过构建更深的网络最终来实现更通用的识别.这些多层的优点是各种抽象层次的学习特征. 在未来的某个时候,人们必定能够相对自如地运用人工智能,安全地驾车出行.这个时刻何时到来我无法预见:但我相信,彼时“智能”会显…
batch 概念:训练时候一批一批的进行正向推导和反向传播.一批计算一次loss mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的. 以下来源:知乎 作者:陈志远 链接:https://zhuanlan.zhihu.com/p/83626029著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. (1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(ite…
在基于卷积神经网络的应用过程中,图像Resize是必不可少的一个步骤.通常原始图像尺寸比较大,比如常见监控摄像机出来的是1080P高清或者720P准高清画面,而网络模型输入一般没有这么大,像Yolo系列目标检测的网络模型输入大小一般为608*608/512*512 等等.那么如何将大尺寸图像输入到网络模型呢?很容易想到的一个方法就是对原始图像进行Resize,将1920*1080的原始图像Resize到网络模型输入尺寸,比如608*608.在压缩图像的过程中,有以下两个问题需要重点讨论: 1.图…
[源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator 目录 [源码解析] 深度学习分布式训练框架 horovod (18) --- kubeflow tf-operator 0x00 摘要 0x01 背景知识 1.1 Kubernetes 1.2 容器作为调度单元 1.3 Kubeflow 1.4 Tensorflow on Kubeflow 1.5 Operator 1.6 TF-Operator 0x02 TensorFlow 分布…
[源码解析] 深度学习流水线并行 GPipe(3) ----重计算 目录 [源码解析] 深度学习流水线并行 GPipe(3) ----重计算 0x00 摘要 0x01 概述 1.1 前文回顾 1.2 Gradient checkpointing 0x02 背景知识 2.1 求导如何工作 2.2 梯度Checkpoint 2.3 论文内容 2.3.1 主要论文 2.3.2 论文 Training Deep Nets with Sublinear Memory Cost 2.3.2.1 主要思路 2…
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”执行 “ 简单的任务”有几个含义: 1 数据或计算规模相对于原任务要大大缩小: 2 就近计算,即会被分配到存放了所需数据的节点进行计算: 3 这些小任务可以并行计算,彼此间几乎没有依赖关系 一个HDFS block (input split)执行一个Map task. Map tas…
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS)的开源实现. MapReduce是Google MapReduce的开源实现. HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算. 本文主要参考了以下三篇博客学习整理而成. 1. Hadoop示例程序WordCount详解及实例 2. hadoop 学习笔…
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS)的开源实现,MapReduce是Google MapReduce的开源实现. HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算. 本文主要参考了以下三篇博客学习整理而成. 1.Hadoop示例程序WordCount详解及实例 2.hadoop 学习笔记:m…
学习大数据接触到的第一个编程思想 MapReduce.   前言 之前在学习大数据的时候,很多东西很零散的做了一些笔记,但是都没有好好去整理它们,这篇文章也是对之前的笔记的整理,或者叫输出吧.一来是加深自己的理解,二来是希望这些东西能帮助想要学习大数据或者说正在学习大数据的朋友.如果你看到里面的东西,让你知道了它,这也是一种进步嘛.说不定就开启了你的另一扇大门呢?   先来看一个问题 在讲 MapReduce 之前,我们先来看一个问题.我们都知道,在大数据场景中,最先让人了解到的就是数据量大.当…
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较好的价值,而深度学习在大数据场景下更能揭示数据内部的逻辑关系.本文就以大数据作为场景,通过自底向上的教程详述在大数据架构体系中如何应用深度学习这一技术.大数据架构中采用的是hadoop系统以及Kerberos安全认证,深度学习采用的是分布式的Tensorflow架构,hadoop解决了大数据的存储问…
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的…
Hadoop YARN版本:2.2.0 关于hadoop yarn的环境搭建可以参考这篇博文:Hadoop 2.0安装以及不停集群加datanode hadoop hdfs yarn伪分布式运行,有如下进程 ResourceManager NodeManager NameNode SecondaryNameNode 写一个mapreduce示例,在yarn上跑,wordcount数单词示例 代码在github上:https://github.com/huahuiyang/yarn-demo 步骤…
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我表示怀疑啊.难道又是我智商的问题嘛╮(╯_╰)╭. 推导神经网络, 我用了一天.最后完成了,我就放心了,可以进行下一部分学习了:) 推这玩意是个脏活累活,直接记住向量化表示(结果)也是极好的. 顺便说一下,本文的图片若看不清,可以另存为本地文件放大看(scan的时候我定了较高的精度),更清楚^^ 该…
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了.这篇帖子详细说一下,go-micro的通信协议.编码,和具体服务方法的调用过程是如何实现的,文中的代码还是我github上的例子: gomicrorpc go-micro 支持很多通信协议:http.tcp.grpc等,支持的编码方式也很多有jso…
摘要: 上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了. 上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可…
不多说,直接上干货! 五.Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处…
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的向量,decode意思是将输入…
[神经网络与深度学习][python开发]caffe-windows使能python接口使用draw_net.py绘制网络结构图过程 标签:[神经网络与深度学习] [python开发] 主要是想用python绘制一下设计的网络结构图,以便可视化.因此在caffe-windows的工程配置中将python的选项设置为true,下面记录了整个成功绘图的过程. <1> 配置CommonSettings.props中python接口 <PythonSupport>true</Pyth…
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] [VS开发] 紧着上一篇,我在windows上备份了三个版本的Caffe库以及visual studio 13的编译工程,主要当时是一步一步来的,想着先是only cpu,然后是支持cuda,最后是并入cuDNN.当我意识到程序要支持在没有GPU的设备上运行时,需要有不同的选择.这里主要记录关于三种不同的配置…