Lucene TF-IDF 相关性算分公式(转)】的更多相关文章

Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核…
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Term Query.Range Query.Exists Query.Prefix Query.Wildcard Query: 2)在ES中,对于Term查询的输入是不做分词处理的,会将输入作为一个整体,在倒排索引中查找准确的词项,并且使用相关度算分公式为每个包含该词项的文档进行相关度算分: 3)通过C…
将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,ConjunctionFilter,DisjunctionFilter. 这几天验证下来,还是or改善最明显,4个termfilter,4508个返回结果,在我本机上性能提高1/3.ExactPhraseFilter也有小幅提升(5%-10%). 最令人不解的是and,原来以为跟结果数和子查询数相关,但几…
今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查询语句的匹配程度. 打分的本质其实就是排序,Elasticsearch 会把最符合用户需求的文档排在最前面. 在 Elasticsearch 5.0 之前,相关性算分算法采用的是 TF-IDF 算法,而在5.0之后采用的是 BM 25 算法.听到这也许你会比较疑惑,想知道这两个算法到底是怎么样的.别…
相关性算分 指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表   如何将最符合用户查询需求的文档放到前列呢? 本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪个文档排在前面   影响相关度算分的参数: A. TF(Term Frequency):词频,即单词在文档中出现的次数,词频越高,相关度越高,计算公式: tf(t in d) = √frequency B. Document Frequency(DF):文档词频, 该词出现在多少篇文档中 C. ID…
在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的原理做一个总结. 1. 文本向量化特征的不足 在将文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如在文本挖掘预处理之向量化与Hash Trick这篇文章中,我们将下面4个短文本做了词频统计: corpus=["I come to China to travel"…
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相关性 TF(Term Frequency): 表示一个term与某个document的相关性.公式为: 这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主…
    一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主题的权重大小.主要是通过包含了该term的docuement的数量和docuement set的总数量来比较的.出现的次数越多,权重越小.…