最长递增子序列问题—LIS】的更多相关文章

最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列:子序列,正如LCS一样,元素不一定要求连续.本节讨论实现三种常见方法,主要是练手. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,可以是1,2,4,6,也可以是-1,2,4,6. 方法一:DP 像LCS一样,从后向…
传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:1 3 2 0 4,1 3 4,1 2 4均为A的LIS.其中元素1和4一定会出现在LIS当中,元素2和3可能会出现在LIS当中,元素0一定不会出现在LIS当中.给出数组A,输出哪些数可能出现在LIS中,哪些数一定出现在LIS中.输出数字对应的下标,下标编号从1开始,编号为1…
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列. 考虑最长公共子序列问题如何分解成…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. 既然是动态规划,难点肯定是在转移方程那了.首先我们用一张网上流传的图: 我个人觉得这张图最好的阐述了这个问题的解法.下面说一下我的理解:首先我们要考虑怎么表示LCS中的各个状态,这个知道的可能觉得很…
lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int solve(int x) { ,b=res; while(a!=b) { ; if(lis[mid]>=x) b=mid; else a=mid+; } return a; } int main() { int n; cin>>n; ;i<=n;i++) scanf("%d&…
最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,序列为1,2,4,6.  解法一:快速排序+LCS 刚开始做这道题的时候,由于之前做过几道LCS的题,于是最先想到的是快速排序+LCS的方法.这种方法解决了当时只计算单个case的问题,但是后来面对计算多个    case的问题的时候,第一次遇到Memory Lim…
问题:给定一组数 a0,a0,....,an-1. 求该序列的最长递增(递减)序列的长度. 最长递增子序列长度的求法有O(n^2)和O(nlogn)两种算法. 1.复杂度为O(n^2)的算法. 设L[i]表示以a[i]结尾的最长递增子序列的长度.则ans=max{L[1],...,L[n]};当i=1时,显然长度为1,即L[1]=1;L[i]的递归方程如下: L[i]=max{L[j]}+1  (j<i且a[j]<a[i]). 于是可以采用自底向上来计算L[2]...L[n]. #define…
1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答     本期主要从动态规划和二分法两个方向来求解最长递增子序列问题. 3.1 动态规划求解最长递增子序列     先介绍时间复杂度为O(N^2^)的方法,具体过程如下: 生成数组dp,dp[i]表示在以arr[i]这个数结尾的情况下,arr[0-i]中的最大递增子序列长度. 对第一个数arr[0]来说,令d…
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前…
原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列…