原题链接,点击此处 欧拉函数:φ(N)表示对一个正整数N,欧拉函数是小于N且与N互质的数的个数 通式:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 其中p1, p2……pn为x的所有质因数,x是不为0的整数. 注意:将n分解为最简质因数,每种质因数只用一次. 比如 12 = 2*2*3,那么 φ(12) = 12 * (1-1/2) * (1-1/3) = 4(1,5,7,11) 若 n = p^k ( p为 质数 ),则 φ(n) =…