leetcode 790. Domino and Tromino Tiling】的更多相关文章

We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX <- domino XX <- "L" tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (…
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/domino-and-tromino-tiling/description/ 题目描述: We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX &l…
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX <- domino XX <- "L" tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (…
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX <- domino XX <- "L" tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (…
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX <- domino XX <- "L" tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (…
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated. XX <- domino XX <- "L" tromino X Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7. (…
2018-09-01 22:38:19 问题描述: 问题求解: 本题如果是第一看到,应该还是非常棘手的,基本没有什么思路. 不妨先从一种简化的版本来考虑.如果仅有一种砖块,那么,填充的方式如下.…
思路: dp.没有像discuss中的那样优化递推式. 实现: class Solution { public: ; int numTilings(int N) { vector<vector<, vector<, )); dp[][] = ; dp[][] = dp[][] = dp[][] = ; ; i <= N; i++) { dp[i][] = (((dp[i - ][] + dp[i - ][]) % MOD + dp[i - ][]) % MOD + dp[i - ]…
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.) We may rotate the i-th domino, so that A[i] and B[i] swap values. Return the…
790. 多米诺和托米诺平铺 有两种形状的瓷砖:一种是 2x1 的多米诺形,另一种是形如 "L" 的托米诺形.两种形状都可以旋转. XX <- 多米诺 XX <- "L" 托米诺 X 给定 N 的值,有多少种方法可以平铺 2 x N 的面板?返回值 mod 10^9 + 7. (平铺指的是每个正方形都必须有瓷砖覆盖.两个平铺不同,当且仅当面板上有四个方向上的相邻单元中的两个,使得恰好有一个平铺有一个瓷砖占据两个正方形.) 示例: 输入: 3 输出: 5…