HMM MEMM CRF 差别 联系】的更多相关文章

声明:本文主要是基于网上的材料做了文字编辑,原创部分甚少.參考资料见最后. 隐马尔可夫模型(Hidden Markov Model.HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最经常使用也是最主要的三个模型.HMM首先出现.MEMM其次,CRF最后.三个算法主要思想例如以下: HMM模型是对转移概率和表现概率直接建模,统计共现概率. MEMM模型是对转移概率…
HMM,MEMM,CRF模型之间关系密切,需看: 参考文献: http://www.cnblogs.com/kevinGaoblog/p/3874709.html http://baike.baidu.com/link?url=3BRZ5qo58-3MaGzPqI7zWhcqNY-0xfjUf79AMDLsv1gHK2JXp2lEZ53KuL56kmJVxlT0hTydmGHXnaAnFqoy1q…
本文参考自:http://blog.csdn.net/happyzhouxiaopei/article/details/7960876 这三个模型都可以用来做序列标注模型.但是其各自有自身的特点,HMM模型是对转移概率和表现概率直接建模,统计共现概率.而MEMM模型是对转移 概率和表现概率建立联合概率,统计时统计的是条件概率.MEMM容易陷入局部最优,是因为MEMM只在局部做归一化,而CRF模型中,统计了全局概率,在 做归一化时,考虑了数据在全局的分布,而不是仅仅在局部归一化,这样就解决了MEM…
原文链接:http://bbs.sciencenet.cn/home.php?mod=space&uid=260809&do=blog&id=573755 注:有少量修改!如有疑问,请访问原作者. 做高端的生物信息理论离不开各种modeling 于是乎漫长的digest之路开始... 一:最大熵模型 Maximum Entropy 现从一个简单例子看起(不要把鸡蛋放在一个篮子里): 比如华盛顿和维吉利亚都可以作人名和地名,而从语料中只知道p(人名)=0.6,那么p(华盛顿=人名)的…
朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM),  最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会证明 Logistic 与 MaxEnt 的等价性,接下来将从图模型的角度阐述几个模型之间的关系,首先用一张图总结一下几个模型的关系: Logistic(Softmax)  MaxEnt 等价性证明 Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价…
DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别,通过硬件防火墙搞定.大数据方案是针对慢速DDos攻击来搞定.难点:在进行攻击的时候,攻击数据包都是经过伪装的,在源IP 地址上也是进行伪造的,这样就很难对攻击进行地址的确定,在查找方面也是很难的.这样就导致了分布式拒绝服务攻击在检验方法上是很难做到的.领域知识见:http://blog.csdn.n…
http://blog.sina.com.cn/s/blog_605f5b4f010109z3.html 首先,CRF,HMM(隐马模型),MEMM(最大熵隐马模型)都常用来做序列标注的建模,像词性标注,True casing.但隐马模型一个最大的缺点就是由于其输出独立性假设,导致其不能考虑上下文的特征,限制了特征的选择,而最大熵隐马模型则解决了这一问题,可以任意的选择特征,但由于其在每一节点都要进行归一化,所以只能找到局部的最优值,同时也带来了标记偏见的问题(label bias),即凡是训练…
(http://blog.csdn.net/xum2008/article/details/38147425) 隐马尔科夫模型(HMM): 图1. 隐马尔科夫模型 隐马尔科夫模型的缺点: 1.HMM只依赖于每一个状态和它对应的观察对象: 序列标注问题不仅和单个词相关,而且和观察序列的长度,单词的上下文,等等相关. 2.目标函数和预测目标函数不匹配: HMM学到的是状态和观察序列的联合分布P(Y,X),而预测问题中,我们需要的是条件概率P(Y|X). 最大熵隐马尔科夫模型(MEMM):   图2.…
隐马尔科夫模型(HMM): 图1. 隐马尔科夫模型 隐马尔科夫模型的缺点: 1.HMM仅仅依赖于每个状态和它相应的观察对象: 序列标注问题不仅和单个词相关,并且和观察序列的长度,单词的上下文,等等相关. 2.目标函数和预測目标函数不匹配: HMM学到的是状态和观察序列的联合分布P(Y,X),而预測问题中,我们须要的是条件概率P(Y|X). 最大熵隐马尔科夫模型(MEMM):   图2. 最大熵马尔科夫模型 MEMM考虑到相邻状态之间依赖关系.且考虑整个观察序列,因此MEMM的表达能力更强:MEM…
LR:Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价的,则 Logistic 与 MaxEnt 是等价的. HMM模型: 将标注看作马尔可夫链,一阶马尔可夫链式针对相邻标注的关系进行建模,其中每个标记对应一个概率函数.HMM是一种生成模型,定义了联合概率分布,其中 x 和 y 分别表示观察序列和相对应的标注序列的随机变量.为了能够定义这种联合概率分布,生成模型需要枚举出所有可能的观察序列,这在实际运算过程中很困难,因为我们需要将观察序列的元素…
Structured Learning 4: Sequence Labeling:https://www.youtube.com/watch?v=o9FPSqobMys HMM crf 李宏毅老师讲的很清楚明了,截图当笔记,偶尔回顾一下.大家可以去看…
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 前言 通过前面几篇系列文章,我们从分词中最基本的问题开始,并分别利用了1-gram和HMM的方法实现了分词demo.本篇博文在此基础上,重点介绍利用CRF来实现分词的方法,这也是一种基于字的分词方法,在将句子转换为序列标注问题之后,不使用HMM的生成模型方式,而是使用条件概率模型进行建模,即判别模型…
CRF的进化 https://flystarhe.github.io/2016/07/13/hmm-memm-crf/参考: http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/ 说明:因为MEMM只在局部做归一化,所以容易陷入局部最优,而CRF模型中,统计了全局概率,在做归一化时,考虑数据在全局的分布,而不是仅仅在局部归一化,解决了MEMM中的标记偏置的问题,可以得到全局最优:CRF没有HMM那样严…
http://blog.csdn.net/ice110956/article/details/17090061 整理至11月中旬在重庆参加的自然语言处理与机器学习会议,第一讲为自然语言处理. 由基本理论到实际运用,整理了基本的框架. 1.      自然语言处理基础 词性标注(POS): 为句子中的每个词语标注词性,可看做是句法分析的关键任务,也可以看做是句法分析的最低层次.对后续句法分析,语义消歧等任务非常有用. POS集合,也就是基本词性规则: 常用的是PennTreebank set,包好…
一.随机场定义 http://zh.wikipedia.org/zh-cn/随机场 随机场(Random field)定义如下: 在概率论中, 由样本空间Ω = {0, 1, …, G − 1}n取样构成的随机变量Xi所组成的S = {X1, …, Xn}.若对所有的ω∈Ω下式均成立,则称π为一个随机场.π(ω) > 0. 一些已有的随机场如:马尔可夫随机场(MRF), 吉布斯随机场 (GRF), 条件随机场 (CRF), 和高斯随机场. 二.马尔可夫随机场(Markov Random Fiel…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 HMM CRF HMM和CRF对比 1.HMM算法 隐马尔可夫模型是用于标注问题的生成模型.有几个参数(ππ,A,B):初始状态概率向量ππ,状态转移矩阵A,观测概率矩阵B.称为马尔科夫模型的三要素. 马尔科夫三个基本问题: 概率计算问题:给定模型和观测序列,计算模型下观测序列输出的概率.–>前向后向算法 学习问题:已知观测…
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语…
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题,它有哪些优缺点. 实际上我们可以不太严谨地这么说,HMM -> HEMM -> CRF,它们之间是逐渐演进的结果. 隐马尔可夫模型(Hidden Markov Model,HMM).最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM).以及条件随机场(Cond…
根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场. 条件随机场是一种判别式模型. 一.理解条件随机场 1.1 HMM简单介绍 HMM即隐马尔可夫模型,它是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而产生观测随机序列. 在这个过程中,不可观测的序列称为状态序…
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常浅,基于 [1] 和 [5] 梳理.感觉 [1] 的讲解很适合完全不知道什么是CRF的人来入门.如果有需要深入理解CRF的需求的话,还是应该仔细读一下几个英文的tutorial,比如 [4] . (一)马尔可夫随机场简单回顾 概率图模型(Probabilistic graphical model,P…
概率图模型 HMM 先从一个具体的例子入手,看看我们要解决的实际问题.例子引自wiki.https://en.wikipedia.org/wiki/Hidden_Markov_model Consider two friends, Alice and Bob, who live far apart from each other and who talk together daily over the telephone about what they did that day. Bob is…
原文链接:https://www.jianshu.com/p/55755fc649b1 如何轻松愉快地理解条件随机场(CRF)?   理解条件随机场最好的办法就是用一个现实的例子来说明它.但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧.于是乎,我翻译了这篇文章.希望对其他伙伴有所帮助.原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/] 想直接看英文的朋…
对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场(crf):是给定一组输入随机变量条件下,另一组输出随机变量的条件概率的分布模型,其特点是假设输出随机变量构成马尔科夫随机场.本文所指线性链条件随机场. 隐马尔科夫模型(HMM):描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型. 当然,作为初学者,从概念上直观感受不到两者的区别与联系,甚至…
这是以前的一篇草稿,当初没写完,今天发出来,但总觉得水平有限,越学越觉得自己菜,写的博客水准低,发完这篇以后就谨慎发博了,毕竟自己菜,不能老吹B,下面是原稿. 好久没更了,本来年前想写篇关于爬虫的总结来,结果在家懒癌发作,开学了也没“挤”出时间来.今天主要是心情好,写下自己学到的一点知识,长了一点人生的经验. 前两周看了HMM和CRF的知识,因为最近做的东西要用到,这两天在用crf++,目前最新的好像是0.58版,再新的没找到资源,貌似0.54之后就只有发布的exe了,0.53版的还有源码,感兴…
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术.在其中,分词技术是一种比较基础的模块.对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来.而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来.分词的意义非常大,在中文中,单字作为最基本的语义单位…
原文链接:http://blog.csdn.net/htw2012/article/details/17734529 有少量修改!如有疑问,请访问原作者. 一:信息检索领域: 信息检索和网络数据领域(WWW, SIGIR, CIKM, WSDM, ACL, EMNLP等)的论文中常用的模型和技术总结(为什么概率是可靠的,概率隐藏了大部分事实,而给予我们可以看得见的部分.) 引子:对于这个领域的博士生来说,看懂论文是入行了解大家在做什么的研究基础,通常我们会去看一本书.看一本书固然是好,但是有一个…
100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差. 为了解决这个问题,我们计算相关性来得到一个介于-1和1之间的值,就可以忽略它们各自不同的度量. 2.xgboost如何寻找最优特征?是有放回还是无放回的呢? 解析: xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆…
中科院nlpir和海量分词(http://www.hylanda.com/)是收费的. hanlp:推荐基于CRF的模型的实现~~要看语料,很多常用词会被分错,所以需要词库支撑.目前最友好的开源工具包应该是HanLP,基于词典,对各种实体词汇做了HMM,也提供了CRF模型.工程实现也不错,性能不是瓶颈.代码有相对完备的注释,文档也比较全,各种算法原理实现也有对应blog,自己研究和做二次开发都比较方便. 最近写了一款分词器,调研了不少文章的开源实现.最终定的方案是 Language Model…
最近有好多小伙伴要面经(还有个要买简历的是什么鬼),然鹅真的没有整理面经呀,真的木有时间(。 ́︿ ̀。).不过话说回来,面经有多大用呢?最起码对于NLP岗位的面试来说,作者发现根本不是面经中说的样子...来源|知乎作者 其实今年参加NLP算法岗秋招的小伙伴可能有感慨, "照着别人的面经去准备了辣么多,轮到自己面试时内容怎么这么不一样?!" "说好的要做到熟练推导SVM呢?怎么从来没人让我推导SVM?" "整场面试都在聊前沿论文啊什么鬼?从来没见这样的面经…