[实变函数]4.2 Egrov 定理】的更多相关文章

1 一致收敛很重要, 但可惜的是很多时候不一致收敛. 比如 $$\bex f_n(x)=x^n\to f(x)=\sedd{\ba{ll} 0,&x\in [0,1)\\ 1,&x=1 \ea},\quad x\in [0,1]; \eex$$ 但 $f_n$ 在 $[0,1-\delta]$ 上一致收敛! 本节的内容就是把这种现象普适化. 2 (Egrov 定理) 设 (1) $mE<\infty$; (2) $\ae$ 有限的可测函数列 $\sed{f_n}$ $\ae$ 收敛于…
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed{(x,y);x\in A, y\in B} \eex$$ 称为 $A$ 与 $B$ 的直积 (direct product). (2)(从高到低) 设 $E\subset \bbR^{p+q}$, $x\in \bbR^p$, 则称 $$\bex E_x=\sed{y\in\bbR^q;(x,y)…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$ 则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编写 问题描述      人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天, 人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天. 现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期.然后再给出一个起始日期, 要求…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define ma…